Vijayakumar, Sethu
Robust and Dexterous Dual-arm Tele-Cooperation using Adaptable Impedance Control
Babarahmati, Keyhan Kouhkiloui, Kasaei, Mohammadreza, Tiseo, Carlo, Mistry, Michael, Vijayakumar, Sethu
In recent years, the need for robots to transition from isolated industrial tasks to shared environments, including human-robot collaboration and teleoperation, has become increasingly evident. Building on the foundation of Fractal Impedance Control (FIC) introduced in our previous work, this paper presents a novel extension to dual-arm tele-cooperation, leveraging the non-linear stiffness and passivity of FIC to adapt to diverse cooperative scenarios. Unlike traditional impedance controllers, our approach ensures stability without relying on energy tanks, as demonstrated in our prior research. In this paper, we further extend the FIC framework to bimanual operations, allowing for stable and smooth switching between different dynamic tasks without gain tuning. We also introduce a telemanipulation architecture that offers higher transparency and dexterity, addressing the challenges of signal latency and low-bandwidth communication. Through extensive experiments, we validate the robustness of our method and the results confirm the advantages of the FIC approach over traditional impedance controllers, showcasing its potential for applications in planetary exploration and other scenarios requiring dexterous telemanipulation. This paper's contributions include the seamless integration of FIC into multi-arm systems, the ability to perform robust interactions in highly variable environments, and the provision of a comprehensive comparison with competing approaches, thereby significantly enhancing the robustness and adaptability of robotic systems.
Adaptive Control for Triadic Human-Robot-FES Collaboration in Gait Rehabilitation: A Pilot Study
Christou, Andreas, del-Ama, Antonio J., Moreno, Juan C., Vijayakumar, Sethu
The hybridisation of robot-assisted gait training and functional electrical stimulation (FES) can provide numerous physiological benefits to neurological patients. However, the design of an effective hybrid controller poses significant challenges. In this over-actuated system, it is extremely difficult to find the right balance between robotic assistance and FES that will provide personalised assistance, prevent muscle fatigue and encourage the patient's active participation in order to accelerate recovery. In this paper, we present an adaptive hybrid robot-FES controller to do this and enable the triadic collaboration between the patient, the robot and FES. A patient-driven controller is designed where the voluntary movement of the patient is prioritised and assistance is provided using FES and the robot in a hierarchical order depending on the patient's performance and their muscles' fitness. The performance of this hybrid adaptive controller is tested in simulation and on one healthy subject. Our results indicate an increase in tracking performance with lower overall assistance, and less muscle fatigue when the hybrid adaptive controller is used, compared to its non adaptive equivalent. This suggests that our hybrid adaptive controller may be able to adapt to the behaviour of the user to provide assistance as needed and prevent the early termination of physical therapy due to muscle fatigue.
RoLoMa: Robust Loco-Manipulation for Quadruped Robots with Arms
Ferrolho, Henrique, Ivan, Vladimir, Merkt, Wolfgang, Havoutis, Ioannis, Vijayakumar, Sethu
Deployment of robotic systems in the real world requires a certain level of robustness in order to deal with uncertainty factors, such as mismatches in the dynamics model, noise in sensor readings, and communication delays. Some approaches tackle these issues reactively at the control stage. However, regardless of the controller, online motion execution can only be as robust as the system capabilities allow at any given state. This is why it is important to have good motion plans to begin with, where robustness is considered proactively. To this end, we propose a metric (derived from first principles) for representing robustness against external disturbances. We then use this metric within our trajectory optimization framework for solving complex loco-manipulation tasks. Through our experiments, we show that trajectories generated using our approach can resist a greater range of forces originating from any possible direction. By using our method, we can compute trajectories that solve tasks as effectively as before, with the added benefit of being able to counteract stronger disturbances in worst-case scenarios.
Online Estimation of Articulated Objects with Factor Graphs using Vision and Proprioceptive Sensing
Buchanan, Russell, Röfer, Adrian, Moura, João, Valada, Abhinav, Vijayakumar, Sethu
From dishwashers to cabinets, humans interact with articulated objects every day, and for a robot to assist in common manipulation tasks, it must learn a representation of articulation. Recent deep learning learning methods can provide powerful vision-based priors on the affordance of articulated objects from previous, possibly simulated, experiences. In contrast, many works estimate articulation by observing the object in motion, requiring the robot to already be interacting with the object. In this work, we propose to use the best of both worlds by introducing an online estimation method that merges vision-based affordance predictions from a neural network with interactive kinematic sensing in an analytical model. Our work has the benefit of using vision to predict an articulation model before touching the object, while also being able to update the model quickly from kinematic sensing during the interaction. In this paper, we implement a full system using shared autonomy for robotic opening of articulated objects, in particular objects in which the articulation is not apparent from vision alone. We implemented our system on a real robot and performed several autonomous closed-loop experiments in which the robot had to open a door with unknown joint while estimating the articulation online. Our system achieved an 80% success rate for autonomous opening of unknown articulated objects.
Few-Shot Learning of Force-Based Motions From Demonstration Through Pre-training of Haptic Representation
Aoyama, Marina Y., Moura, João, Saito, Namiko, Vijayakumar, Sethu
In many contact-rich tasks, force sensing plays an essential role in adapting the motion to the physical properties of the manipulated object. To enable robots to capture the underlying distribution of object properties necessary for generalising learnt manipulation tasks to unseen objects, existing Learning from Demonstration (LfD) approaches require a large number of costly human demonstrations. Our proposed semi-supervised LfD approach decouples the learnt model into an haptic representation encoder and a motion generation decoder. This enables us to pre-train the first using large amount of unsupervised data, easily accessible, while using few-shot LfD to train the second, leveraging the benefits of learning skills from humans. We validate the approach on the wiping task using sponges with different stiffness and surface friction. Our results demonstrate that pre-training significantly improves the ability of the LfD model to recognise physical properties and generate desired wiping motions for unseen sponges, outperforming the LfD method without pre-training. We validate the motion generated by our semi-supervised LfD model on the physical robot hardware using the KUKA iiwa robot arm. We also validate that the haptic representation encoder, pre-trained in simulation, captures the properties of real objects, explaining its contribution to improving the generalisation of the downstream task.
Nonprehensile Planar Manipulation through Reinforcement Learning with Multimodal Categorical Exploration
Ferrandis, Juan Del Aguila, Moura, João, Vijayakumar, Sethu
Developing robot controllers capable of achieving dexterous nonprehensile manipulation, such as pushing an object on a table, is challenging. The underactuated and hybrid-dynamics nature of the problem, further complicated by the uncertainty resulting from the frictional interactions, requires sophisticated control behaviors. Reinforcement Learning (RL) is a powerful framework for developing such robot controllers. However, previous RL literature addressing the nonprehensile pushing task achieves low accuracy, non-smooth trajectories, and only simple motions, i.e. without rotation of the manipulated object. We conjecture that previously used unimodal exploration strategies fail to capture the inherent hybrid-dynamics of the task, arising from the different possible contact interaction modes between the robot and the object, such as sticking, sliding, and separation. In this work, we propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies for arbitrary starting and target object poses, i.e. positions and orientations, and with improved accuracy. We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers. Furthermore, we validate the transferability of the learned policies, trained entirely in simulation, to a physical robot hardware using the KUKA iiwa robot arm. See our supplemental video: https://youtu.be/vTdva1mgrk4.
Topology-Based MPC for Automatic Footstep Placement and Contact Surface Selection
Shim, Jaehyun, Mastalli, Carlos, Corbères, Thomas, Tonneau, Steve, Ivan, Vladimir, Vijayakumar, Sethu
State-of-the-art approaches to footstep planning assume reduced-order dynamics when solving the combinatorial problem of selecting contact surfaces in real time. However, in exchange for computational efficiency, these approaches ignore joint torque limits and limb dynamics. In this work, we address these limitations by presenting a topology-based approach that enables model predictive control (MPC) to simultaneously plan full-body motions, torque commands, footstep placements, and contact surfaces in real time. To determine if a robot's foot is inside a contact surface, we borrow the winding number concept from topology. We then use this winding number and potential field to create a contact-surface penalty function. By using this penalty function, MPC can select a contact surface from all candidate surfaces in the vicinity and determine footstep placements within it. We demonstrate the benefits of our approach by showing the impact of considering full-body dynamics, which includes joint torque limits and limb dynamics, on the selection of footstep placements and contact surfaces. Furthermore, we validate the feasibility of deploying our topology-based approach in an MPC scheme and explore its potential capabilities through a series of experimental and simulation trials.
A behavioural transformer for effective collaboration between a robot and a non-stationary human
Mon-Williams, Ruaridh, Stouraitis, Theodoros, Vijayakumar, Sethu
A key challenge in human-robot collaboration is the non-stationarity created by humans due to changes in their behaviour. This alters environmental transitions and hinders human-robot collaboration. We propose a principled meta-learning framework to explore how robots could better predict human behaviour, and thereby deal with issues of non-stationarity. On the basis of this framework, we developed Behaviour-Transform (BeTrans). BeTrans is a conditional transformer that enables a robot agent to adapt quickly to new human agents with non-stationary behaviours, due to its notable performance with sequential data. We trained BeTrans on simulated human agents with different systematic biases in collaborative settings. We used an original customisable environment to show that BeTrans effectively collaborates with simulated human agents and adapts faster to non-stationary simulated human agents than SOTA techniques.
Online Multi-Contact Receding Horizon Planning via Value Function Approximation
Wang, Jiayi, Kim, Sanghyun, Lembono, Teguh Santoso, Du, Wenqian, Shim, Jaehyun, Samadi, Saeid, Wang, Ke, Ivan, Vladimir, Calinon, Sylvain, Vijayakumar, Sethu, Tonneau, Steve
Planning multi-contact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the non-convex dynamics of multi-contact motions, this approach is computationally expensive. To enable online Receding Horizon Planning (RHP) of multi-contact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with Multiple Levels of Model Fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely Locally-Guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally-guided RHP achieves the best computation efficiency (95\%-98.6\% cycles converge online). This computation advantage enables us to demonstrate online receding horizon planning of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.
Perceptive Locomotion through Whole-Body MPC and Optimal Region Selection
Corbères, Thomas, Mastalli, Carlos, Merkt, Wolfgang, Havoutis, Ioannis, Fallon, Maurice, Mansard, Nicolas, Flayols, Thomas, Vijayakumar, Sethu, Tonneau, Steve
Abstract--Real-time synthesis of legged locomotion maneuvers in challenging industrial settings is still an open problem, requiring simultaneous determination of footsteps locations several steps ahead while generating whole-body motions close to the robot's limits. State estimation and perception errors impose the practical constraint of fast re-planning motions in a model predictive control (MPC) framework. We first observe that the computational limitation of perceptive locomotion pipelines lies in the combinatorics of contact surface selection. Re-planning contact locations on selected surfaces can be accomplished at MPC frequencies (50-100 Hz). Then, whole-body motion generation typically follows a reference trajectory for the robot base to facilitate convergence. Our contributions are integrated into a complete framework for perceptive locomotion, validated under diverse terrain conditions, and demonstrated in challenging trials that push the robot's actuation limits, as well as in the ICRA 2023 quadruped challenge simulation. ELIABLE and autonomous locomotion for legged robots in arbitrary environments is a longstanding challenge. A. State of the art The hardware maturity of quadruped robots [1], [2], [3], [4] The mathematical complexity of the legged locomotion motivates the development of a motion synthesis framework problem in arbitrary environments is such that an undesired for applications including inspections in industrial areas [5]. Typically, a contact plan describing the contact handling the issues of contact decision (where should the robot locations is first computed, assumed to be feasible, and provided step?) and Whole-Body Model Predictive Control (WB-MPC) as input to a WB-MPC framework to generate wholebody of the robot (what motion creates the contact?). As a result, the contact decision Each contact decision defines high-dimensional, non-linear must be made using an approximated robot model, under the geometric and dynamic constraints on the WB-MPC that uncertainty that results from imperfect perception and state prevent a trivial decoupling of the two issues: How to prove estimation. The complexity of the approximated model has, that a contact plan is valid without finding a feasible wholebody unsurprisingly, a strong correlation with the versatility and motion to achieve it?