Goto

Collaborating Authors

 Versteeg, Philip


Boosting Local Causal Discovery in High-Dimensional Expression Data

arXiv.org Machine Learning

We study how well Local Causal Discovery (LCD), a simple and efficient constraint-based method for causal discovery, is able to predict causal effects in large-scale gene expression data. We construct practical estimators specific to the high-dimensional regime. Inspired by ICP, we use an optional preselection method and two different statistical tests. Empirically, the resulting LCD estimator is seen to closely approach the accuracy of ICP, the state-of-the-art method, while it is algorithmically simpler and computationally more efficient.


Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions

Neural Information Processing Systems

An important goal common to domain adaptation and causal inference is to make accurate predictions when the distributions for the source (or training) domain(s) and target (or test) domain(s) differ. In many cases, these different distributions can be modeled as different contexts of a single underlying system, in which each distribution corresponds to a different perturbation of the system, or in causal terms, an intervention. We focus on a class of such causal domain adaptation problems, where data for one or more source domains are given, and the task is to predict the distribution of a certain target variable from measurements of other variables in one or more target domains. We propose an approach for solving these problems that exploits causal inference and does not rely on prior knowledge of the causal graph, the type of interventions or the intervention targets. We demonstrate our approach by evaluating a possible implementation on simulated and real world data.


Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions

Neural Information Processing Systems

An important goal common to domain adaptation and causal inference is to make accurate predictions when the distributions for the source (or training) domain(s) and target (or test) domain(s) differ. In many cases, these different distributions can be modeled as different contexts of a single underlying system, in which each distribution corresponds to a different perturbation of the system, or in causal terms, an intervention. We focus on a class of such causal domain adaptation problems, where data for one or more source domains are given, and the task is to predict the distribution of a certain target variable from measurements of other variables in one or more target domains. We propose an approach for solving these problems that exploits causal inference and does not rely on prior knowledge of the causal graph, the type of interventions or the intervention targets. We demonstrate our approach by evaluating a possible implementation on simulated and real world data.


Causal Transfer Learning

arXiv.org Machine Learning

An important goal in both transfer learning and causal inference is to make accurate predictions when the distribution of the test set and the training set(s) differ. Such a distribution shift may happen as a result of an external intervention on the data generating process, causing certain aspects of the distribution to change, and others to remain invariant. We consider a class of causal transfer learning problems, where multiple training sets are given that correspond to different external interventions, and the task is to predict the distribution of a target variable given measurements of other variables for a new (yet unseen) intervention on the system. We propose a method for solving these problems that exploits causal reasoning but does neither rely on prior knowledge of the causal graph, nor on the the type of interventions and their targets. We evaluate the method on simulated and real world data and find that it outperforms a standard prediction method that ignores the distribution shift.