Verma, Amit
Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
Erbas, Ismail, Pandey, Vikas, Nizam, Navid Ibtehaj, Yuan, Nanxue, Verma, Amit, Barosso, Margarida, Intes, Xavier
Fluorescence Lifetime Imaging (FLI) is a critical molecular imaging modality that provides unique information about the tissue microenvironment, which is invaluable for biomedical applications. FLI operates by acquiring and analyzing photon time-of-arrival histograms to extract quantitative parameters associated with temporal fluorescence decay. These histograms are influenced by the intrinsic properties of the fluorophore, instrument parameters, time-of-flight distributions associated with pixel-wise variations in the topographic and optical characteristics of the sample. Recent advancements in Deep Learning (DL) have enabled improved fluorescence lifetime parameter estimation. However, existing models are primarily designed for planar surface samples, limiting their applicability in translational scenarios involving complex surface profiles, such as \textit{in-vivo} whole-animal or imaged guided surgical applications. To address this limitation, we present MFliNet (Macroscopic FLI Network), a novel DL architecture that integrates the Instrument Response Function (IRF) as an additional input alongside experimental photon time-of-arrival histograms. Leveraging the capabilities of a Differential Transformer encoder-decoder architecture, MFliNet effectively focuses on critical input features, such as variations in photon time-of-arrival distributions. We evaluate MFliNet using rigorously designed tissue-mimicking phantoms and preclinical in-vivo cancer xenograft models. Our results demonstrate the model's robustness and suitability for complex macroscopic FLI applications, offering new opportunities for advanced biomedical imaging in diverse and challenging settings.
Efficient QUBO transformation for Higher Degree Pseudo Boolean Functions
Verma, Amit, Lewis, Mark, Kochenberger, Gary
Quadratic Unconstrained Binary Optimization (QUBO) is recognized as a unifying framework for modeling a wide range of problems. Problems can be solved with commercial solvers customized for solving QUBO and since QUBO have degree two, it is useful to have a method for transforming higher degree pseudo-Boolean problems to QUBO format. The standard transformation approach requires additional auxiliary variables supported by penalty terms for each higher degree term. This paper improves on the existing cubic-to-quadratic transformation approach by minimizing the number of additional variables as well as penalty coefficient. Extensive experimental testing on Max 3-SAT modeled as QUBO shows a near 100% reduction in the subproblem size used for minimization of the number of auxiliary variables.
QUBO transformation using Eigenvalue Decomposition
Verma, Amit, Lewis, Mark
Quadratic Unconstrained Binary Optimization (QUBO) is a general-purpose modeling framework for combinatorial optimization problems and is a requirement for quantum annealers. This paper utilizes the eigenvalue decomposition of the underlying Q matrix to alter and improve the search process by extracting the information from dominant eigenvalues and eigenvectors to implicitly guide the search towards promising areas of the solution landscape. Computational results on benchmark datasets illustrate the efficacy of our routine demonstrating significant performance improvements on problems with dominant eigenvalues.
Constraint Programming to Discover One-Flip Local Optima of Quadratic Unconstrained Binary Optimization Problems
Verma, Amit, Lewis, Mark
The broad applicability of Quadratic Unconstrained Binary Optimization (QUBO) constitutes a general-purpose modeling framework for combinatorial optimization problems and are a required format for gate array and quantum annealing computers. QUBO annealers as well as other solution approaches benefit from starting with a diverse set of solutions with local optimality an additional benefit. This paper presents a new method for generating a set of one-flip local optima leveraging constraint programming. Further, as demonstrated in experimental testing, analysis of the solution set allows the generation of soft constraints to help guide the optimization process.
Goal Seeking Quadratic Unconstrained Binary Optimization
Verma, Amit, Lewis, Mark
The Quadratic Unconstrained Binary Optimization (QUBO) modeling and solution framework is required for quantum and digital annealers whose goal is the optimization of a well defined metric, the objective function. However, diverse suboptimal solutions may be preferred over harder to implement strict optimal ones. In addition, the decision-maker usually has insights that are not always efficiently translated into the optimization model, such as acceptable target, interval or range values. Multi-criteria decision making is an example of involving the user in the decision process. In this paper, we present two variants of goal-seeking QUBO that minimize the deviation from the goal through a tabu-search based greedy one-flip heuristic. Experimental results illustrate the efficacy of the proposed approach over Constraint Programming for quickly finding a satisficing set of solutions.