Vera-Rodriguez, Ruben
MINT-Demo: Membership Inference Test Demonstrator
DeAlcala, Daniel, Morales, Aythami, Fierrez, Julian, Mancera, Gonzalo, Tolosana, Ruben, Vera-Rodriguez, Ruben
We present the Membership Inference Test Demonstrator, to emphasize the need for more transparent machine learning training processes. MINT is a technique for experimentally determining whether certain data has been used during the training of machine learning models. We conduct experiments with popular face recognition models and 5 public databases containing over 22M images. Promising results, up to 89% accuracy are achieved, suggesting that it is possible to recognize if an AI model has been trained with specific data. Finally, we present a MINT platform as demonstrator of this technology aimed to promote transparency in AI training.
From Pixels to Words: Leveraging Explainability in Face Recognition through Interactive Natural Language Processing
DeAndres-Tame, Ivan, Faisal, Muhammad, Tolosana, Ruben, Al-Refai, Rouqaiah, Vera-Rodriguez, Ruben, Terhรถrst, Philipp
Face Recognition (FR) has advanced significantly with the development of deep learning, achieving high accuracy in several applications. However, the lack of interpretability of these systems raises concerns about their accountability, fairness, and reliability. In the present study, we propose an interactive framework to enhance the explainability of FR models by combining model-agnostic Explainable Artificial Intelligence (XAI) and Natural Language Processing (NLP) techniques. The proposed framework is able to accurately answer various questions of the user through an interactive chatbot. In particular, the explanations generated by our proposed method are in the form of natural language text and visual representations, which for example can describe how different facial regions contribute to the similarity measure between two faces. This is achieved through the automatic analysis of the output's saliency heatmaps of the face images and a BERT question-answering model, providing users with an interface that facilitates a comprehensive understanding of the FR decisions. The proposed approach is interactive, allowing the users to ask questions to get more precise information based on the user's background knowledge. More importantly, in contrast to previous studies, our solution does not decrease the face recognition performance. We demonstrate the effectiveness of the method through different experiments, highlighting its potential to make FR systems more interpretable and user-friendly, especially in sensitive applications where decision-making transparency is crucial.
Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Gomez, Luis F., Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sรฉbastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, ล truc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
DeAndres-Tame, Ivan, Tolosana, Ruben, Melzi, Pietro, Vera-Rodriguez, Ruben, Kim, Minchul, Rathgeb, Christian, Liu, Xiaoming, Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier, Zhong, Zhizhou, Huang, Yuge, Mi, Yuxi, Ding, Shouhong, Zhou, Shuigeng, He, Shuai, Fu, Lingzhi, Cong, Heng, Zhang, Rongyu, Xiao, Zhihong, Smirnov, Evgeny, Pimenov, Anton, Grigorev, Aleksei, Timoshenko, Denis, Asfaw, Kaleb Mesfin, Low, Cheng Yaw, Liu, Hao, Wang, Chuyi, Zuo, Qing, He, Zhixiang, Shahreza, Hatef Otroshi, George, Anjith, Unnervik, Alexander, Rahimi, Parsa, Marcel, Sรฉbastien, Neto, Pedro C., Huber, Marco, Kolf, Jan Niklas, Damer, Naser, Boutros, Fadi, Cardoso, Jaime S., Sequeira, Ana F., Atzori, Andrea, Fenu, Gianni, Marras, Mirko, ล truc, Vitomir, Yu, Jiang, Li, Zhangjie, Li, Jichun, Zhao, Weisong, Lei, Zhen, Zhu, Xiangyu, Zhang, Xiao-Yu, Biesseck, Bernardo, Vidal, Pedro, Coelho, Luiz, Granada, Roger, Menotti, David
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
How Good is ChatGPT at Face Biometrics? A First Look into Recognition, Soft Biometrics, and Explainability
DeAndres-Tame, Ivan, Tolosana, Ruben, Vera-Rodriguez, Ruben, Morales, Aythami, Fierrez, Julian, Ortega-Garcia, Javier
Large Language Models (LLMs) such as GPT developed by OpenAI, have already shown astonishing results, introducing quick changes in our society. This has been intensified by the release of ChatGPT which allows anyone to interact in a simple conversational way with LLMs, without any experience in the field needed. As a result, ChatGPT has been rapidly applied to many different tasks such as code- and song-writer, education, virtual assistants, etc., showing impressive results for tasks for which it was not trained (zero-shot learning). The present study aims to explore the ability of ChatGPT, based on the recent GPT-4 multimodal LLM, for the task of face biometrics. In particular, we analyze the ability of ChatGPT to perform tasks such as face verification, soft-biometrics estimation, and explainability of the results. ChatGPT could be very valuable to further increase the explainability and transparency of the automatic decisions in human scenarios. Experiments are carried out in order to evaluate the performance and robustness of ChatGPT, using popular public benchmarks and comparing the results with state-of-the-art methods in the field. The results achieved in this study show the potential of LLMs such as ChatGPT for face biometrics, especially to enhance explainability. For reproducibility reasons, we release all the code in GitHub.
SaFL: Sybil-aware Federated Learning with Application to Face Recognition
Ghafourian, Mahdi, Fierrez, Julian, Vera-Rodriguez, Ruben, Tolosana, Ruben, Morales, Aythami
Federated Learning (FL) is a machine learning paradigm to conduct collaborative learning among clients on a joint model. The primary goal is to share clients' local training parameters with an integrating server while preserving their privacy. This method permits to exploit the potential of massive mobile users' data for the benefit of machine learning models' performance while keeping sensitive data on local devices. On the downside, FL raises security and privacy concerns that have just started to be studied. To address some of the key threats in FL, researchers have proposed to use secure aggregation methods (e.g. homomorphic encryption, secure multiparty computation, etc.). These solutions improve some security and privacy metrics, but at the same time bring about other serious threats such as poisoning attacks, backdoor attacks, and free running attacks. This paper proposes a new defense method against poisoning attacks in FL called SaFL (Sybil-aware Federated Learning) that minimizes the effect of sybils with a novel time-variant aggregation scheme.
CareFall: Automatic Fall Detection through Wearable Devices and AI Methods
Ruiz-Garcia, Juan Carlos, Tolosana, Ruben, Vera-Rodriguez, Ruben, Moro, Carlos
The aging population has led to a growing number of falls in our society, affecting global public health worldwide. This paper presents CareFall, an automatic Fall Detection System (FDS) based on wearable devices and Artificial Intelligence (AI) methods. CareFall considers the accelerometer and gyroscope time signals extracted from a smartwatch. Two different approaches are used for feature extraction and classification: i) threshold-based, and ii) machine learning-based. Experimental results on two public databases show that the machine learning-based approach, which combines accelerometer and gyroscope information, outperforms the threshold-based approach in terms of accuracy, sensitivity, and specificity. This research contributes to the design of smart and user-friendly solutions to mitigate the negative consequences of falls among older people.
OTB-morph: One-Time Biometrics via Morphing
Ghafourian, Mahdi, Fierrez, Julian, Vera-Rodriguez, Ruben, Morales, Aythami, Serna, Ignacio
Cancelable biometrics are a group of techniques to transform the input biometric to an irreversible feature intentionally using a transformation function and usually a key in order to provide security and privacy in biometric recognition systems. This transformation is repeatable enabling subsequent biometric comparisons. This paper is introducing a new idea to exploit as a transformation function for cancelable biometrics aimed at protecting the templates against iterative optimization attacks. Our proposed scheme is based on time-varying keys (random biometrics in our case) and morphing transformations. An experimental implementation of the proposed scheme is given for face biometrics. The results confirm that the proposed approach is able to withstand against leakage attacks while improving the recognition performance.
Toward Face Biometric De-identification using Adversarial Examples
Ghafourian, Mahdi, Fierrez, Julian, Gomez, Luis Felipe, Vera-Rodriguez, Ruben, Morales, Aythami, Rezgui, Zohra, Veldhuis, Raymond
The remarkable success of face recognition (FR) has endangered the privacy of internet users particularly in social media. Recently, researchers turned to use adversarial examples as a countermeasure. In this paper, we assess the effectiveness of using two widely known adversarial methods (BIM and ILLC) for de-identifying personal images. We discovered, unlike previous claims in the literature, that it is not easy to get a high protection success rate (suppressing identification rate) with imperceptible adversarial perturbation to the human visual system. Finally, we found out that the transferability of adversarial examples is highly affected by the training parameters of the network with which they are generated.
ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation
Melzi, Pietro, Tolosana, Ruben, Vera-Rodriguez, Ruben
Electrocardiograms (ECGs) have shown unique patterns to distinguish between different subjects and present important advantages compared to other biometric traits, such as difficulty to counterfeit, liveness detection, and ubiquity. Also, with the success of Deep Learning technologies, ECG biometric recognition has received increasing interest in recent years. However, it is not easy to evaluate the improvements of novel ECG proposed methods, mainly due to the lack of public data and standard experimental protocols. In this study, we perform extensive analysis and comparison of different scenarios in ECG biometric recognition. Both verification and identification tasks are investigated, as well as single- and multi-session scenarios. Finally, we also perform single- and multi-lead ECG experiments, considering traditional scenarios using electrodes in the chest and limbs and current user-friendly wearable devices. In addition, we present ECGXtractor, a robust Deep Learning technology trained with an in-house large-scale database and able to operate successfully across various scenarios and multiple databases. We introduce our proposed feature extractor, trained with multiple sinus-rhythm heartbeats belonging to 55,967 subjects, and provide a general public benchmark evaluation with detailed experimental protocol. We evaluate the system performance over four different databases: i) our in-house database, ii) PTB, iii) ECG-ID, and iv) CYBHi. With the widely used PTB database, we achieve Equal Error Rates of 0.14% and 2.06% in verification, and accuracies of 100% and 96.46% in identification, respectively in single- and multi-session analysis. We release the source code, experimental protocol details, and pre-trained models in GitHub to advance in the field.