Venkataraman, Ashwin
A Model-based Projection Technique for Segmenting Customers
Jagabathula, Srikanth, Subramanian, Lakshminarayanan, Venkataraman, Ashwin
We consider the problem of segmenting a large population of customers into non-overlapping groups with similar preferences, using diverse preference observations such as purchases, ratings, clicks, etc. over subsets of items. We focus on the setting where the universe of items is large (ranging from thousands to millions) and unstructured (lacking well-defined attributes) and each customer provides observations for only a few items. These data characteristics limit the applicability of existing techniques in marketing and machine learning. To overcome these limitations, we propose a model-based projection technique, which transforms the diverse set of observations into a more comparable scale and deals with missing data by projecting the transformed data onto a low-dimensional space. We then cluster the projected data to obtain the customer segments. Theoretically, we derive precise necessary and sufficient conditions that guarantee asymptotic recovery of the true customer segments. Empirically, we demonstrate the speed and performance of our method in two real-world case studies: (a) 84% improvement in the accuracy of new movie recommendations on the MovieLens data set and (b) 6% improvement in the performance of similar item recommendations algorithm on an offline dataset at eBay. We show that our method outperforms standard latent-class and demographic-based techniques.
Reputation-based Worker Filtering in Crowdsourcing
Jagabathula, Srikanth, Subramanian, Lakshminarayanan, Venkataraman, Ashwin
In this paper, we study the problem of aggregating noisy labels from crowd workers to infer the underlying true labels of binary tasks. Unlike most prior work which has examined this problem under the random worker paradigm, we consider a much broader class of {\em adversarial} workers with no specific assumptions on their labeling strategy. Our key contribution is the design of a computationally efficient reputation algorithm to identify and filter out these adversarial workers in crowdsourcing systems. Our algorithm uses the concept of optimal semi-matchings in conjunction with worker penalties based on label disagreements, to assign a reputation score for every worker. We provide strong theoretical guarantees for deterministic adversarial strategies as well as the extreme case of {\em sophisticated} adversaries where we analyze the worst-case behavior of our algorithm. Finally, we show that our reputation algorithm can significantly improve the accuracy of existing label aggregation algorithms in real-world crowdsourcing datasets.