Venable, Kristen Brent
Distributed Autonomous Swarm Formation for Dynamic Network Bridging
Galliera, Raffaele, Möhlenhof, Thies, Amato, Alessandro, Duran, Daniel, Venable, Kristen Brent, Suri, Niranjan
Effective operation and seamless cooperation of robotic systems are a fundamental component of next-generation technologies and applications. In contexts such as disaster response, swarm operations require coordinated behavior and mobility control to be handled in a distributed manner, with the quality of the agents' actions heavily relying on the communication between them and the underlying network. In this paper, we formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP), where a swarm of agents cooperates to form a link between two distant moving targets. Furthermore, we propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN) which naturally applies to the networked, distributed nature of the task. The proposed method is evaluated in a simulated environment and compared to a centralized heuristic baseline showing promising results. Moreover, a further step in the direction of sim-to-real transfer is presented, by additionally evaluating the proposed approach in a near Live Virtual Constructive (LVC) UAV framework.
Probabilistic Reasoning in Generative Large Language Models
Nafar, Aliakbar, Venable, Kristen Brent, Kordjamshidi, Parisa
This paper considers the challenges that Large Language Models (LLMs) face when reasoning over text that includes information involving uncertainty explicitly quantified via probability values. This type of reasoning is relevant to a variety of contexts ranging from everyday conversations to medical decision-making. Despite improvements in the mathematical reasoning capabilities of LLMs, they still exhibit significant difficulties when it comes to probabilistic reasoning. To deal with this problem, we first introduce the Bayesian Linguistic Inference Dataset (BLInD), a new dataset specifically designed to test the probabilistic reasoning capabilities of LLMs. We then leverage this new dataset to thoroughly illustrate the specific limitations of LLMs for tasks involving probabilistic reasoning and present several strategies that map the problem to different formal representations, including Python code, probabilistic inference algorithms, and probabilistic logical programming. We Figure 1: An example from the BLInD dataset including conclude by providing an evaluation of our methods an underlying Bayesian network, its textual description, and on BLInD and on an adaptation of a causal reasoning probabilistic queries in natural language.
Teaching Probabilistic Logical Reasoning to Transformers
Nafar, Aliakbar, Venable, Kristen Brent, Kordjamshidi, Parisa
In this paper, we evaluate the capability of transformer-based language models in making inferences over uncertain text that includes uncertain rules of reasoning. We cover both Pre-trained Language Models (PLMs) and generative Large Language Models (LLMs). Our evaluation results show that both generations of language models struggle with reasoning over uncertain text. We propose a novel end-to-end fine-tuning approach, Probabilistic Constraint Training (PCT), that utilizes probabilistic logical rules as constraints in the fine-tuning phase without relying on these rules in the inference stage. To assess the effectiveness of PCT, we utilize the related corpora and, additionally, create a new and more challenging benchmark that, unlike the previous ones, uses instance-specific rules. Our study demonstrates that PCT improves the transformer-based language model's intrinsic reasoning and makes their probabilistic logical reasoning process more explicit and explainable. Furthermore, PCT equips these models to effectively handle novel situations, including higher reasoning depth, new domains, and complex probabilistic structures.
Learning Collaborative Information Dissemination with Graph-based Multi-Agent Reinforcement Learning
Galliera, Raffaele, Venable, Kristen Brent, Bassani, Matteo, Suri, Niranjan
In modern communication systems, efficient and reliable information dissemination is crucial for supporting critical operations across domains like disaster response, autonomous vehicles, and sensor networks. This paper introduces a Multi-Agent Reinforcement Learning (MARL) approach as a significant step forward in achieving more decentralized, efficient, and collaborative solutions. We propose a Partially Observable Stochastic Game (POSG) formulation for information dissemination empowering each agent to decide on message forwarding independently, based on their one-hop neighborhood. This constitutes a significant paradigm shift from traditional heuristics based on Multi-Point Relay (MPR) selection. Our approach harnesses Graph Convolutional Reinforcement Learning, employing Graph Attention Networks (GAT) with dynamic attention to capture essential network features. We propose two approaches, L-DGN and HL-DGN, which differ in the information that is exchanged among agents. We evaluate the performance of our decentralized approaches, by comparing them with a widely-used MPR heuristic, and we show that our trained policies are able to efficiently cover the network while bypassing the MPR set selection process. Our approach is a first step toward supporting the resilience of real-world broadcast communication infrastructures via learned, collaborative information dissemination.
Thinking Fast and Slow in AI: the Role of Metacognition
Ganapini, Marianna Bergamaschi, Campbell, Murray, Fabiano, Francesco, Horesh, Lior, Lenchner, Jon, Loreggia, Andrea, Mattei, Nicholas, Rossi, Francesca, Srivastava, Biplav, Venable, Kristen Brent
AI systems have seen dramatic advancement in recent years, bringing many applications that pervade our everyday life. However, we are still mostly seeing instances of narrow AI: many of these recent developments are typically focused on a very limited set of competencies and goals, e.g., image interpretation, natural language processing, classification, prediction, and many others. Moreover, while these successes can be accredited to improved algorithms and techniques, they are also tightly linked to the availability of huge datasets and computational power. State-of-the-art AI still lacks many capabilities that would naturally be included in a notion of (human) intelligence. We argue that a better study of the mechanisms that allow humans to have these capabilities can help us understand how to imbue AI systems with these competencies. We focus especially on D. Kahneman's theory of thinking fast and slow, and we propose a multi-agent AI architecture where incoming problems are solved by either system 1 (or "fast") agents, that react by exploiting only past experience, or by system 2 (or "slow") agents, that are deliberately activated when there is the need to reason and search for optimal solutions beyond what is expected from the system 1 agent. Both kinds of agents are supported by a model of the world, containing domain knowledge about the environment, and a model of "self", containing information about past actions of the system and solvers' skills.
Embedding Ethical Principles in Collective Decision Support Systems
Greene, Joshua (Harvard University) | Rossi, Francesca (University of Padova and IBM T. J. Watson) | Tasioulas, John (King's College London) | Venable, Kristen Brent (Tulane University and IHMC) | Williams, Brian (Massachusetts Institute of Technology)
The future will see autonomous machines acting in the same environment as humans, in areas as diverse as driving, assistive technology, and health care. Think of self-driving cars, companion robots, and medical diagnosis support systems. We also believe that humans and machines will often need to work together and agree on common decisions. Thus hybrid collective decision making systems will be in great need. In this scenario, both machines and collective decision making systems should follow some form of moral values and ethical principles (appropriate to where they will act but always aligned to humans'), as well as safety constraints. In fact, humans would accept and trust more machines that behave as ethically as other humans in the same environment. Also, these principles would make it easier for machines to determine their actions and explain their behavior in terms understandable by humans. Moreover, often machines and humans will need to make decisions together, either through consensus or by reaching a compromise. This would be facilitated by shared moral values and ethical principles.
Bribery in Voting With Soft Constraints
Pini, Maria Silvia (University of Padova) | Rossi, Francesca (University of Padova) | Venable, Kristen Brent (Tulane University)
We consider a multi-agent scenario where a collection of agents needs to select a common decision from a large set of decisions over which they express their preferences. This decision set has a combinatorial structure, that is, each decision is an element of the Cartesian product of the domains of some variables. Agents express their preferences over the decisions via soft constraints. We consider both sequential preference aggregation methods (they aggregate the preferences over one variable at a time) and one-step methods and we study the computational complexity of influencing them through bribery. We prove that bribery is NPcomplete for the sequential aggregation methods (based on Plurality, Approval, and Borda) for most of the cost schemes we defined, while it is polynomial for one-step Plurality.
A Framework for Aggregating Influenced CP-Nets and its Resistance to Bribery
Maran, Alberto (University of Padova) | Maudet, Nicolas (LIP6, UPMC, Paris) | Pini, Maria Silvia (University of Padova) | Rossi, Francesca (University of Padova) | Venable, Kristen Brent (Tulane University and IHMC)
We consider multi-agent settings where a set of agents want to take a collective decision, based on their preferences over the possible candidate options. While agents have their initial inclination, they may interact and influence each other, and therefore modify their preferences, until hopefully they reach a stable state and declare their final inclination. At that point, a voting rule is used to aggregate the agents’ preferences and generate the collective decision. Recent work has modeled the influence phenomenon in the case of voting over a single issue. Here we generalize this model to account for preferences over combinatorially structured domains including several issues. We propose a way to model influence when agents express their preferences as CP-nets. We define two procedures for aggregating preferences in this scenario, by interleaving voting and influence convergence, and study their resistance to bribery.
A Short Introduction to Preferences: Between AI and Social Choice
Rossi, Francesca, Venable, Kristen Brent, Walsh, Toby
This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent settings. ISBN 9781608455867, 102 pages.
Local search for stable marriage problems with ties and incomplete lists
Gelain, Mirco, Pini, Maria Silvia, RossI, Francesca, Venable, Kristen Brent, Walsh, Toby
The stable marriage problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. We consider a useful variation of the stable marriage problem, where the men and women express their preferences using a preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists. In this setting, we study the problem of finding a stable matching that marries as many people as possible. Stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. This problem is NP-hard. We tackle this problem using local search, exploiting properties of the problem to reduce the size of the neighborhood and to make local moves efficiently. Experimental results show that this approach is able to solve large problems, quickly returning stable matchings of large and often optimal size.