Goto

Collaborating Authors

 Vempaty, Aditya


Multimodal Auto Validation For Self-Refinement in Web Agents

arXiv.org Artificial Intelligence

As our world digitizes, web agents that can automate complex and monotonous tasks are becoming essential in streamlining workflows. This paper introduces an approach to improving web agent performance through multi-modal validation and self-refinement. We present a comprehensive study of different modalities (text, vision) and the effect of hierarchy for the automatic validation of web agents, building upon the state-of-the-art Agent-E web automation framework. We also introduce a self-refinement mechanism for web automation, using the developed auto-validator, that enables web agents to detect and self-correct workflow failures. Our results show significant gains on Agent-E's (a SOTA web agent) prior state-of-art performance, boosting task-completion rates from 76.2\% to 81.24\% on the subset of the WebVoyager benchmark. The approach presented in this paper paves the way for more reliable digital assistants in complex, real-world scenarios.


SEAL: Suite for Evaluating API-use of LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.


Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems

arXiv.org Artificial Intelligence

AI Agents are changing the way work gets done, both in consumer and enterprise domains. However, the design patterns and architectures to build highly capable agents or multi-agent systems are still developing, and the understanding of the implication of various design choices and algorithms is still evolving. In this paper, we present our work on building a novel web agent, Agent-E \footnote{Our code is available at \url{https://github.com/EmergenceAI/Agent-E}}. Agent-E introduces numerous architectural improvements over prior state-of-the-art web agents such as hierarchical architecture, flexible DOM distillation and denoising method, and the concept of \textit{change observation} to guide the agent towards more accurate performance. We first present the results of an evaluation of Agent-E on WebVoyager benchmark dataset and show that Agent-E beats other SOTA text and multi-modal web agents on this benchmark in most categories by 10-30\%. We then synthesize our learnings from the development of Agent-E into general design principles for developing agentic systems. These include the use of domain-specific primitive skills, the importance of distillation and de-noising of environmental observations, the advantages of a hierarchical architecture, and the role of agentic self-improvement to enhance agent efficiency and efficacy as the agent gathers experience.


Better RAG using Relevant Information Gain

arXiv.org Artificial Intelligence

A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG), which inserts text retrieved from a larger memory into an LLM's context window. However, the context window is typically limited to several thousand tokens, which limits the number of retrieved passages that can inform a model's response. For this reason, it's important to avoid occupying context window space with redundant information by ensuring a degree of diversity among retrieved passages. At the same time, the information should also be relevant to the current task. Most prior methods that encourage diversity among retrieved results, such as Maximal Marginal Relevance (MMR), do so by incorporating an objective that explicitly trades off diversity and relevance. We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results. By optimizing this metric, diversity organically emerges from our system. When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks from the Retrieval Augmented Generation Benchmark (RGB), outperforming existing metrics that directly optimize for relevance and diversity.


Automating question generation from educational text

arXiv.org Artificial Intelligence

The use of question-based activities (QBAs) is wide-spread in education, traditionally forming an integral part of the learning and assessment process. In this paper, we design and evaluate an automated question generation tool for formative and summative assessment in schools. We present an expert survey of one hundred and four teachers, demonstrating the need for automated generation of QBAs, as a tool that can significantly reduce the workload of teachers and facilitate personalized learning experiences. Leveraging the recent advancements in generative AI, we then present a modular framework employing transformer based language models for automatic generation of multiple-choice questions (MCQs) from textual content. The presented solution, with distinct modules for question generation, correct answer prediction, and distractor formulation, enables us to evaluate different language models and generation techniques. Finally, we perform an extensive quantitative and qualitative evaluation, demonstrating trade-offs in the use of different techniques and models.


Design and Evaluation of a Tutor Platform for Personalized Vocabulary Learning

arXiv.org Artificial Intelligence

This paper presents our experiences in designing, implementing, and piloting an intelligent vocabulary learning tutor. The design builds on several intelligent tutoring design concepts, including graph-based knowledge representation, learner modeling, and adaptive learning content and assessment exposition. Specifically, we design a novel phased learner model approach to enable systematic exposure to words during vocabulary instruction. We also built an example application over the tutor platform that uses a learning activity involving videos and an assessment activity involving word to picture/image association. More importantly, the tutor adapts to the significant variation in children's knowledge at the beginning of kindergarten, and evolves the application at the speed of each individual learner. A pilot study with 180 kindergarten learners allowed the tutor to collect various kinds of activity information suitable for insights and interventions both at an individual- and class-level. The effort also demonstrates that we can do A/B testing for a variety of hypotheses at scale with such a framework.


Assessing National Development Plans for Alignment With Sustainable Development Goals via Semantic Search

AAAI Conferences

The United Nations Development Programme (UNDP) helps countries implement the United Nations (UN) Sustainable Development Goals (SDGs), an agenda for tackling major societal issues such as poverty, hunger, and environmental degradation by the year 2030. A key service provided by UNDP to countries that seek it is a review of national development plans and sector strategies by policy experts to assess alignment of national targets with one or more of the 169 targets of the 17 SDGs. Known as the Rapid Integrated Assessment (RIA), this process involves manual review of hundreds, if not thousands, of pages of documents and takes weeks to complete. In this work, we develop a natural language processing-based methodology to accelerate the workflow of policy experts. Specifically we use paragraph embedding techniques to find paragraphs in the documents that match the semantic concepts of each of the SDG targets. One novel technical contribution of our work is in our use of historical RIAs from other countries as a form of neighborhood-based supervision for matches in the country under study. We have successfully piloted the algorithm to perform the RIA for Papua New Guinea’s national plan, with the UNDP estimating it will help reduce their completion time from an estimated 3-4 weeks to 3 days.


Human-Machine Inference Networks For Smart Decision Making: Opportunities and Challenges

arXiv.org Machine Learning

The emerging paradigm of Human-Machine Inference Networks (HuMaINs) combines complementary cognitive strengths of humans and machines in an intelligent manner to tackle various inference tasks and achieves higher performance than either humans or machines by themselves. While inference performance optimization techniques for human-only or sensor-only networks are quite mature, HuMaINs require novel signal processing and machine learning solutions. In this paper, we present an overview of the HuMaINs architecture with a focus on three main issues that include architecture design, inference algorithms including security/privacy challenges, and application areas/use cases.