Veluvolu, Kalyana C
The Strange Attractor Model of Bipedal Locomotion and its Consequences on Motor Control
Tiseo, Carlo, Foo, Ming Jeat, Veluvolu, Kalyana C, Forner-Cordero, Arturo, Ang, Wei Tech
Despite decades of study, many unknowns exist about the mechanisms governing human locomotion. Current models and motor control theories can only partially capture the phenomenon. This may be a major cause of the reduced efficacy of lower limb rehabilitation therapies. Recently, it has been proposed that human locomotion can be planned in the task-space by taking advantage of the gravitational pull acting on the Centre of Mass (CoM) by modelling the attractor dynamics. The model proposed represents the CoM transversal trajectory as a harmonic oscillator propagating on the attractor manifold. However, the vertical trajectory of the CoM, controlled through ankle strategies, has not been accurately captured yet. Research Questions: Is it possible to improve the model accuracy by introducing a mathematical model of the ankle strategies by coordinating the heel-strike and toe-off strategies with the CoM movement? Our solution consists of closed-form equations that plan human-like trajectories for the CoM, the foot swing, and the ankle strategies. We have tested our model by extracting the biomechanics data and postural during locomotion from the motion capture trajectories of 12 healthy subjects at 3 self-selected speeds to generate a virtual subject using our model. Our virtual subject has been based on the average of the collected data. The model output shows our virtual subject has walking trajectories that have their features consistent with our motion capture data. Additionally, it emerged from the data analysis that our model regulates the stance phase of the foot as humans do. The model proves that locomotion can be modelled as an attractor dynamics, proving the existence of a nonlinear map that our nervous system learns. It can support a deeper investigation of locomotion motor control, potentially improving locomotion rehabilitation and assistive technologies.
Motor Control Insights on Walking Planner and its Stability
Tiseo, Carlo, Veluvolu, Kalyana C, Ang, Wei Tech
The application of biomechanic and motor control models in the control of bidedal robots (humanoids, and exoskeletons) has revealed limitations of our understanding of human locomotion. A recently proposed model uses the potential energy for bipedal structures to model the bipedal dynamics, and it allows to predict the system dynamics from its kinematics. This work proposes a task-space planner for human-like straight locomotion that target application of in rehabilitation robotics and computational neuroscience. The proposed architecture is based on the potential energy model and employs locomotor strategies from human data as a reference for human behaviour. The model generates Centre of Mass (CoM) trajectories, foot swing trajectories and the Base of Support (BoS) over time. The data show that the proposed architecture can generate behaviour in line with human walking strategies for both the CoM and the foot swing. Despite the CoM vertical trajectory being not as smooth as a human trajectory, yet the proposed model significantly reduces the error in the estimation of the CoM vertical trajectory compared to the inverted pendulum models. The proposed model is also able to asses the stability based on the body kinematics embedding in currently used in the clinical practice. However, the model also implies a shift in the interpretation of the spatiotemporal parameters of the gait, which are now determined by the conditions for the equilibrium and not \textit{vice versa}. In other words, locomotion is a dynamic reaching where the motor primitives are also determined by gravity.