Vatsa, Mayank
From No to Know: Taxonomy, Challenges, and Opportunities for Negation Understanding in Multimodal Foundation Models
Vatsa, Mayank, Bharati, Aparna, Mittal, Surbhi, Singh, Richa
Negation, a linguistic construct conveying absence, denial, or contradiction, poses significant challenges for multilingual multimodal foundation models. These models excel in tasks like machine translation, text-guided generation, image captioning, audio interactions, and video processing but often struggle to accurately interpret negation across diverse languages and cultural contexts. In this perspective paper, we propose a comprehensive taxonomy of negation constructs, illustrating how structural, semantic, and cultural factors influence multimodal foundation models. We present open research questions and highlight key challenges, emphasizing the importance of addressing these issues to achieve robust negation handling. Finally, we advocate for specialized benchmarks, language-specific tokenization, fine-grained attention mechanisms, and advanced multimodal architectures. These strategies can foster more adaptable and semantically precise multimodal foundation models, better equipped to navigate and accurately interpret the complexities of negation in multilingual, multimodal environments.
Discerning the Chaos: Detecting Adversarial Perturbations while Disentangling Intentional from Unintentional Noises
Jain, Anubhooti, Roy, Susim, Gupta, Kwanit, Vatsa, Mayank, Singh, Richa
Deep learning models, such as those used for face recognition and attribute prediction, are susceptible to manipulations like adversarial noise and unintentional noise, including Gaussian and impulse noise. This paper introduces CIAI, a Class-Independent Adversarial Intent detection network built on a modified vision transformer with detection layers. CIAI employs a novel loss function that combines Maximum Mean Discrepancy and Center Loss to detect both intentional (adversarial attacks) and unintentional noise, regardless of the image class. It is trained in a multi-step fashion. We also introduce the aspect of intent during detection that can act as an added layer of security. We further showcase the performance of our proposed detector on CelebA, CelebA-HQ, LFW, AgeDB, and CIFAR-10 datasets. Our detector is able to detect both intentional (like FGSM, PGD, and DeepFool) and unintentional (like Gaussian and Salt & Pepper noises) perturbations.
Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning
Akhter, Yasmeena, Ranjan, Rishabh, Singh, Richa, Vatsa, Mayank
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions, a common limitation in resource-constrained healthcare settings. High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities. However, when images are downsized for processing in Computer-Aided Diagnosis (CAD) systems, vital spatial details and receptive fields are lost, hampering diagnosis accuracy. To address this, this paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method. This approach leverages the self-attention mechanism of Vision Transformers (ViT) to transfer critical diagnostic knowledge from high-resolution images to enhance the diagnostic efficacy of low-resolution CXRs. MLCAK incorporates local pathological findings to boost model explainability, enabling more accurate global predictions in a multi-task framework tailored for low-resolution CXR analysis. Our research, utilizing the Vindr CXR dataset, shows a considerable enhancement in the ability to diagnose diseases from low-resolution images (e.g. 28 x 28), suggesting a critical transition from the traditional reliance on high-resolution imaging (e.g. 224 x 224).
Adventures of Trustworthy Vision-Language Models: A Survey
Vatsa, Mayank, Jain, Anubhooti, Singh, Richa
Recently, transformers have become incredibly popular in computer vision and vision-language tasks. This notable rise in their usage can be primarily attributed to the capabilities offered by attention mechanisms and the outstanding ability of transformers to adapt and apply themselves to a variety of tasks and domains. Their versatility and state-of-the-art performance have established them as indispensable tools for a wide array of applications. However, in the constantly changing landscape of machine learning, the assurance of the trustworthiness of transformers holds utmost importance. This paper conducts a thorough examination of vision-language transformers, employing three fundamental principles of responsible AI: Bias, Robustness, and Interpretability. The primary objective of this paper is to delve into the intricacies and complexities associated with the practical use of transformers, with the overarching goal of advancing our comprehension of how to enhance their reliability and accountability.
On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms
Mittal, Surbhi, Thakral, Kartik, Singh, Richa, Vatsa, Mayank, Glaser, Tamar, Ferrer, Cristian Canton, Hassner, Tal
Artificial Intelligence (AI) has made its way into various scientific fields, providing astonishing improvements over existing algorithms for a wide variety of tasks. In recent years, there have been severe concerns over the trustworthiness of AI technologies. The scientific community has focused on the development of trustworthy AI algorithms. However, machine and deep learning algorithms, popular in the AI community today, depend heavily on the data used during their development. These learning algorithms identify patterns in the data, learning the behavioral objective. Any flaws in the data have the potential to translate directly into algorithms. In this study, we discuss the importance of Responsible Machine Learning Datasets and propose a framework to evaluate the datasets through a responsible rubric. While existing work focuses on the post-hoc evaluation of algorithms for their trustworthiness, we provide a framework that considers the data component separately to understand its role in the algorithm. We discuss responsible datasets through the lens of fairness, privacy, and regulatory compliance and provide recommendations for constructing future datasets. After surveying over 100 datasets, we use 60 datasets for analysis and demonstrate that none of these datasets is immune to issues of fairness, privacy preservation, and regulatory compliance. We provide modifications to the ``datasheets for datasets" with important additions for improved dataset documentation. With governments around the world regularizing data protection laws, the method for the creation of datasets in the scientific community requires revision. We believe this study is timely and relevant in today's era of AI.
On Biased Behavior of GANs for Face Verification
Kotti, Sasikanth, Vatsa, Mayank, Singh, Richa
Deep Learning systems need large data for training. Datasets for training face verification systems are difficult to obtain and prone to privacy issues. Synthetic data generated by generative models such as GANs can be a good alternative. However, we show that data generated from GANs are prone to bias and fairness issues. Specifically, GANs trained on FFHQ dataset show biased behavior towards generating white faces in the age group of 20-29. We also demonstrate that synthetic faces cause disparate impact, specifically for race attribute, when used for fine tuning face verification systems.
WaveTransform: Crafting Adversarial Examples via Input Decomposition
Anshumaan, Divyam, Agarwal, Akshay, Vatsa, Mayank, Singh, Richa
Frequency spectrum has played a significant role in learning unique and discriminating features for object recognition. Both low and high frequency information present in images have been extracted and learnt by a host of representation learning techniques, including deep learning. Inspired by this observation, we introduce a novel class of adversarial attacks, namely `WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination). The frequency subbands are analyzed using wavelet decomposition; the subbands are corrupted and then used to construct an adversarial example. Experiments are performed using multiple databases and CNN models to establish the effectiveness of the proposed WaveTransform attack and analyze the importance of a particular frequency component. The robustness of the proposed attack is also evaluated through its transferability and resiliency against a recent adversarial defense algorithm. Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
On Learning Density Aware Embeddings
Ghosh, Soumyadeep, Singh, Richa, Vatsa, Mayank
Deep metric learning algorithms have been utilized to learn discriminative and generalizable models which are effective for classifying unseen classes. In this paper, a novel noise tolerant deep metric learning algorithm is proposed. The proposed method, termed as Density Aware Metric Learning, enforces the model to learn embeddings that are pulled towards the most dense region of the clusters for each class. It is achieved by iteratively shifting the estimate of the center towards the dense region of the cluster thereby leading to faster convergence and higher generalizability. In addition to this, the approach is robust to noisy samples in the training data, often present as outliers. Detailed experiments and analysis on two challenging cross-modal face recognition databases and two popular object recognition databases exhibit the efficacy of the proposed approach. It has superior convergence, requires lesser training time, and yields better accuracies than several popular deep metric learning methods.
Guided Dropout
Keshari, Rohit, Singh, Richa, Vatsa, Mayank
Dropout is often used in deep neural networks to prevent over-fitting. Conventionally, dropout training invokes \textit{random drop} of nodes from the hidden layers of a Neural Network. It is our hypothesis that a guided selection of nodes for intelligent dropout can lead to better generalization as compared to the traditional dropout. In this research, we propose "guided dropout" for training deep neural network which drop nodes by measuring the strength of each node. We also demonstrate that conventional dropout is a specific case of the proposed guided dropout. Experimental evaluation on multiple datasets including MNIST, CIFAR10, CIFAR100, SVHN, and Tiny ImageNet demonstrate the efficacy of the proposed guided dropout.
Unravelling Robustness of Deep Learning Based Face Recognition Against Adversarial Attacks
Goswami, Gaurav (IIIT Delhi and IBM) | Ratha, Nalini (IBM) | Agarwal, Akshay (IIIT Delhi) | Singh, Richa (IIIT Delhi) | Vatsa, Mayank (IIIT Delhi)
Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks inspired by commonly observed distortions in the real world that are well handled by shallow learning methods along with learning based adversaries; (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, including OpenFace and VGG-Face, and two publicly available databases (MEDS and PaSC) demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. The proposed method is also compared with existing detection algorithms and the results show that it is able to detect the attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present several effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.