Vasconcelos, Cristina
Blue noise for diffusion models
Huang, Xingchang, Salaün, Corentin, Vasconcelos, Cristina, Theobalt, Christian, Öztireli, Cengiz, Singh, Gurprit
Most of the existing diffusion models use Gaussian noise for training and sampling across all time steps, which may not optimally account for the frequency contents reconstructed by the denoising network. Despite the diverse applications of correlated noise in computer graphics, its potential for improving the training process has been underexplored. In this paper, we introduce a novel and general class of diffusion models taking correlated noise within and across images into account. More specifically, we propose a time-varying noise model to incorporate correlated noise into the training process, as well as a method for fast generation of correlated noise mask. Our model is built upon deterministic diffusion models and utilizes blue noise to help improve the generation quality compared to using Gaussian white (random) noise only. Further, our framework allows introducing correlation across images within a single mini-batch to improve gradient flow. We perform both qualitative and quantitative evaluations on a variety of datasets using our method, achieving improvements on different tasks over existing deterministic diffusion models in terms of FID metric.
Scaling Vision Transformers to 22 Billion Parameters
Dehghani, Mostafa, Djolonga, Josip, Mustafa, Basil, Padlewski, Piotr, Heek, Jonathan, Gilmer, Justin, Steiner, Andreas, Caron, Mathilde, Geirhos, Robert, Alabdulmohsin, Ibrahim, Jenatton, Rodolphe, Beyer, Lucas, Tschannen, Michael, Arnab, Anurag, Wang, Xiao, Riquelme, Carlos, Minderer, Matthias, Puigcerver, Joan, Evci, Utku, Kumar, Manoj, van Steenkiste, Sjoerd, Elsayed, Gamaleldin F., Mahendran, Aravindh, Yu, Fisher, Oliver, Avital, Huot, Fantine, Bastings, Jasmijn, Collier, Mark Patrick, Gritsenko, Alexey, Birodkar, Vighnesh, Vasconcelos, Cristina, Tay, Yi, Mensink, Thomas, Kolesnikov, Alexander, Pavetić, Filip, Tran, Dustin, Kipf, Thomas, Lučić, Mario, Zhai, Xiaohua, Keysers, Daniel, Harmsen, Jeremiah, Houlsby, Neil
The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Faghri, Fartash, Vasconcelos, Cristina, Fleet, David J., Pedregosa, Fabian, Roux, Nicolas Le
Adversarial robustness is an open challenge in deep learning, most often tackled using adversarial training. Adversarial training is computationally costly, involving alternated optimization with a trade-off between standard generalization and adversarial robustness. We explore training robust models without adversarial training by revisiting a known result linking maximally robust classifiers and minimum norm solutions, and combining it with recent results on the implicit bias of optimizers. First, we show that, under certain conditions, it is possible to achieve both perfect standard accuracy and a certain degree of robustness without a trade-off, simply by training an overparameterized model using the implicit bias of the optimization. In that regime, there is a direct relationship between the type of the optimizer and the attack to which the model is robust. Second, we investigate the role of the architecture in designing robust models. In particular, we characterize the robustness of linear convolutional models, showing that they resist attacks subject to a constraint on the Fourier-$\ell_\infty$ norm. This result explains the property of $\ell_p$-bounded adversarial perturbations that tend to be concentrated in the Fourier domain. This leads us to a novel attack in the Fourier domain that is inspired by the well-known frequency-dependent sensitivity of human perception. We evaluate Fourier-$\ell_\infty$ robustness of recent CIFAR-10 models with robust training and visualize adversarial perturbations.