Varshney, Deeksha
Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization
Ong, Keane, Mao, Rui, Varshney, Deeksha, Cambria, Erik, Mengaldo, Gianmarco
Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research.
CDialog: A Multi-turn Covid-19 Conversation Dataset for Entity-Aware Dialog Generation
Varshney, Deeksha, Zafar, Aizan, Behra, Niranshu Kumar, Ekbal, Asif
The development of conversational agents to interact with patients and deliver clinical advice has attracted the interest of many researchers, particularly in light of the COVID-19 pandemic. The training of an end-to-end neural based dialog system, on the other hand, is hampered by a lack of multi-turn medical dialog corpus. We make the very first attempt to release a high-quality multi-turn Medical Dialog dataset relating to Covid-19 disease named CDialog, with over 1K conversations collected from the online medical counselling websites. We annotate each utterance of the conversation with seven different categories of medical entities, including diseases, symptoms, medical tests, medical history, remedies, medications and other aspects as additional labels. Finally, we propose a novel neural medical dialog system based on the CDialog dataset to advance future research on developing automated medical dialog systems. We use pre-trained language models for dialogue generation, incorporating annotated medical entities, to generate a virtual doctor's response that addresses the patient's query. Experimental results show that the proposed dialog models perform comparably better when supplemented with entity information and hence can improve the response quality.