Varici, Burak
Score-based Causal Representation Learning with Interventions
Varici, Burak, Acarturk, Emre, Shanmugam, Karthikeyan, Kumar, Abhishek, Tajer, Ali
This paper studies the causal representation learning problem when the latent causal variables are observed indirectly through an unknown linear transformation. The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables. Sufficient conditions for DAG recovery are established, and it is shown that a large class of non-linear models in the latent space (e.g., causal mechanisms parameterized by two-layer neural networks) satisfy these conditions. These sufficient conditions ensure that the effect of an intervention can be detected correctly from changes in the score. Capitalizing on this property, recovering a valid transformation is facilitated by the following key property: any valid transformation renders latent variables' score function to necessarily have the minimal variations across different interventional environments. This property is leveraged for perfect recovery of the latent DAG structure using only \emph{soft} interventions. For the special case of stochastic \emph{hard} interventions, with an additional hypothesis testing step, one can also uniquely recover the linear transformation up to scaling and a valid causal ordering.
Causal Bandits for Linear Structural Equation Models
Varici, Burak, Shanmugam, Karthikeyan, Sattigeri, Prasanna, Tajer, Ali
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model to minimize cumulative regret with respect to the best intervention in hindsight. This is, naturally, posed as a causal bandit problem. The focus is on causal bandits for linear structural equation models (SEMs) and soft interventions. It is assumed that the graph's structure is known and has $N$ nodes. Two linear mechanisms, one soft intervention and one observational, are assumed for each node, giving rise to $2^N$ possible interventions. Majority of the existing causal bandit algorithms assume that at least the interventional distributions of the reward node's parents are fully specified. However, there are $2^N$ such distributions (one corresponding to each intervention), acquiring which becomes prohibitive even in moderate-sized graphs. This paper dispenses with the assumption of knowing these distributions or their marginals. Two algorithms are proposed for the frequentist (UCB-based) and Bayesian (Thompson Sampling-based) settings. The key idea of these algorithms is to avoid directly estimating the $2^N$ reward distributions and instead estimate the parameters that fully specify the SEMs (linear in $N$) and use them to compute the rewards. In both algorithms, under boundedness assumptions on noise and the parameter space, the cumulative regrets scale as $\tilde{\cal O} (d^{L+\frac{1}{2}} \sqrt{NT})$, where $d$ is the graph's maximum degree, and $L$ is the length of its longest causal path. Additionally, a minimax lower of $\Omega(d^{\frac{L}{2}-2}\sqrt{T})$ is presented, which suggests that the achievable and lower bounds conform in their scaling behavior with respect to the horizon $T$ and graph parameters $d$ and $L$.
Scalable Intervention Target Estimation in Linear Models
Varici, Burak, Shanmugam, Karthikeyan, Sattigeri, Prasanna, Tajer, Ali
This paper considers the problem of estimating the unknown intervention targets in a causal directed acyclic graph from observational and interventional data. The focus is on soft interventions in linear structural equation models (SEMs). Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets even for linear SEMs. This severely limits their scalability and sample complexity. This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets. The pivotal idea is to estimate the intervention sites from the difference between the precision matrices associated with the observational and interventional datasets. It involves repeatedly estimating such sites in different subsets of variables. The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class. Consistency, Markov equivalency, and sample complexity are established analytically. Finally, simulation results on both real and synthetic data demonstrate the gains of the proposed approach for scalable causal structure recovery. Implementation of the algorithm and the code to reproduce the simulation results are available at \url{https://github.com/bvarici/intervention-estimation}.