Varia, Siddharth
A Multi-Modal Multilingual Benchmark for Document Image Classification
Fujinuma, Yoshinari, Varia, Siddharth, Sankaran, Nishant, Appalaraju, Srikar, Min, Bonan, Vyas, Yogarshi
Document image classification is different from plain-text document classification and consists of classifying a document by understanding the content and structure of documents such as forms, emails, and other such documents. We show that the only existing dataset for this task (Lewis et al., 2006) has several limitations and we introduce two newly curated multilingual datasets WIKI-DOC and MULTIEURLEX-DOC that overcome these limitations. We further undertake a comprehensive study of popular visually-rich document understanding or Document AI models in previously untested setting in document image classification such as 1) multi-label classification, and 2) zero-shot cross-lingual transfer setup. Experimental results show limitations of multilingual Document AI models on cross-lingual transfer across typologically distant languages. Our datasets and findings open the door for future research into improving Document AI models.
Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis
Varia, Siddharth, Wang, Shuai, Halder, Kishaloy, Vacareanu, Robert, Ballesteros, Miguel, Benajiba, Yassine, John, Neha Anna, Anubhai, Rishita, Muresan, Smaranda, Roth, Dan
Aspect-based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task which involves four elements from user-generated texts: aspect term, aspect category, opinion term, and sentiment polarity. Most computational approaches focus on some of the ABSA sub-tasks such as tuple (aspect term, sentiment polarity) or triplet (aspect term, opinion term, sentiment polarity) extraction using either pipeline or joint modeling approaches. Recently, generative approaches have been proposed to extract all four elements as (one or more) quadruplets from text as a single task. In this work, we take a step further and propose a unified framework for solving ABSA, and the associated sub-tasks to improve the performance in few-shot scenarios. To this end, we fine-tune a T5 model with instructional prompts in a multi-task learning fashion covering all the sub-tasks, as well as the entire quadruple prediction task. In experiments with multiple benchmark datasets, we show that the proposed multi-task prompting approach brings performance boost (by absolute 8.29 F1) in the few-shot learning setting.
A Weak Supervision Approach for Few-Shot Aspect Based Sentiment
Vacareanu, Robert, Varia, Siddharth, Halder, Kishaloy, Wang, Shuai, Paolini, Giovanni, John, Neha Anna, Ballesteros, Miguel, Muresan, Smaranda
We explore how weak supervision on abundant unlabeled data can be leveraged to improve few-shot performance in aspect-based sentiment analysis (ABSA) tasks. We propose a pipeline approach to construct a noisy ABSA dataset, and we use it to adapt a pre-trained sequence-to-sequence model to the ABSA tasks. We test the resulting model on three widely used ABSA datasets, before and after fine-tuning. Our proposed method preserves the full fine-tuning performance while showing significant improvements (15.84% absolute F1) in the few-shot learning scenario for the harder tasks. In zero-shot (i.e., without fine-tuning), our method outperforms the previous state of the art on the aspect extraction sentiment classification (AESC) task and is, additionally, capable of performing the harder aspect sentiment triplet extraction (ASTE) task.