Vardy, Andrew
Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling
Kuckling, Jonas, Luckey, Robin, Avrutin, Viktor, Vardy, Andrew, Reina, Andreagiovanni, Hamann, Heiko
With increasing numbers of mobile robots arriving in real-world applications, more robots coexist in the same space, interact, and possibly collaborate. Methods to provide such systems with system size scalability are known, for example, from swarm robotics. Example strategies are self-organizing behavior, a strict decentralized approach, and limiting the robot-robot communication. Despite applying such strategies, any multi-robot system breaks above a certain critical system size (i.e., number of robots) as too many robots share a resource (e.g., space, communication channel). We provide additional evidence based on simulations, that at these critical system sizes, the system performance separates into two phases: nearly optimal and minimal performance. We speculate that in real-world applications that are configured for optimal system size, the supposedly high-performing system may actually live on borrowed time as it is on a transient to breakdown. We provide two modeling options (based on queueing theory and a population model) that may help to support this reasoning.
Herd's Eye View: Improving Game AI Agent Learning with Collaborative Perception
Nash, Andrew, Vardy, Andrew, Churchill, David
We present a novel perception model named Herd's Eye View (HEV) that adopts a global perspective derived from multiple agents to boost the decision-making capabilities of reinforcement learning (RL) agents in multi-agent environments, specifically in the context of game AI. The HEV approach utilizes cooperative perception to empower RL agents with a global reasoning ability, enhancing their decision-making. We demonstrate the effectiveness of the HEV within simulated game environments and highlight its superior performance compared to traditional ego-centric perception models. This work contributes to cooperative perception and multi-agent reinforcement learning by offering a more realistic and efficient perspective for global coordination and decision-making within game environments. Moreover, our approach promotes broader AI applications beyond gaming by addressing constraints faced by AI in other fields such as robotics. The code is available at https://github.com/andrewnash/Herds-Eye-View