Vanovskiy, Vladimir
On the practical applicability of modern DFT functionals for chemical computations. Case study of DM21 applicability for geometry optimization
Kulaev, Kirill, Ryabov, Alexander, Medvedev, Michael, Burnaev, Evgeny, Vanovskiy, Vladimir
Density functional theory (DFT) is probably the most promising approach for quantum chemistry calculations considering its good balance between calculations precision and speed. In recent years, several neural network-based functionals have been developed for exchange-correlation energy approximation in DFT, DM21 developed by Google Deepmind being the most notable between them. This study focuses on evaluating the efficiency of DM21 functional in predicting molecular geometries, with a focus on the influence of oscillatory behavior in neural network exchange-correlation functionals. We implemented geometry optimization in PySCF for the DM21 functional in geometry optimization problem, compared its performance with traditional functionals, and tested it on various benchmarks. Our findings reveal both the potential and the current challenges of using neural network functionals for geometry optimization in DFT. We propose a solution extending the practical applicability of such functionals and allowing to model new substances with their help.
Data-Driven Uncertainty-Aware Forecasting of Sea Ice Conditions in the Gulf of Ob Based on Satellite Radar Imagery
Ailuro, Stefan Maria, Nedorubova, Anna, Grigoryev, Timofey, Burnaev, Evgeny, Vanovskiy, Vladimir
The increase in Arctic marine activity due to rapid warming and significant sea ice loss necessitates highly reliable, short-term sea ice forecasts to ensure maritime safety and operational efficiency. In this work, we present a novel data-driven approach for sea ice condition forecasting in the Gulf of Ob, leveraging sequences of radar images from Sentinel-1, weather observations, and GLORYS forecasts. Our approach integrates advanced video prediction models, originally developed for vision tasks, with domain-specific data preprocessing and augmentation techniques tailored to the unique challenges of Arctic sea ice dynamics. Central to our methodology is the use of uncertainty quantification to assess the reliability of predictions, ensuring robust decision-making in safety-critical applications. Furthermore, we propose a confidence-based model mixture mechanism that enhances forecast accuracy and model robustness, crucial for reliable operations in volatile Arctic environments. Our results demonstrate substantial improvements over baseline approaches, underscoring the importance of uncertainty quantification and specialized data handling for effective and safe operations and reliable forecasting.