Vann, Jared
In-Context Learning with Topological Information for Knowledge Graph Completion
Sehwag, Udari Madhushani, Papasotiriou, Kassiani, Vann, Jared, Ganesh, Sumitra
Knowledge graphs (KGs) are crucial for representing and reasoning over structured information, supporting a wide range of applications such as information retrieval, question answering, and decision-making. However, their effectiveness is often hindered by incompleteness, limiting their potential for real-world impact. While knowledge graph completion (KGC) has been extensively studied in the literature, recent advances in generative AI models, particularly large language models (LLMs), have introduced new opportunities for innovation. In-context learning has recently emerged as a promising approach for leveraging pretrained knowledge of LLMs across a range of natural language processing tasks and has been widely adopted in both academia and industry. However, how to utilize in-context learning for effective KGC remains relatively underexplored. We develop a novel method that incorporates topological information through in-context learning to enhance KGC performance. By integrating ontological knowledge and graph structure into the context of LLMs, our approach achieves strong performance in the transductive setting i.e., nodes in the test graph dataset are present in the training graph dataset. Furthermore, we apply our approach to KGC in the more challenging inductive setting, i.e., nodes in the training graph dataset and test graph dataset are disjoint, leveraging the ontology to infer useful information about missing nodes which serve as contextual cues for the LLM during inference. Our method demonstrates superior performance compared to baselines on the ILPC-small and ILPC-large datasets.
A Heterogeneous Agent Model of Mortgage Servicing: An Income-based Relief Analysis
Garg, Deepeka, Evans, Benjamin Patrick, Ardon, Leo, Narayanan, Annapoorani Lakshmi, Vann, Jared, Madhushani, Udari, Henry-Nickie, Makada, Ganesh, Sumitra
Mortgages account for the largest portion of household debt in the United States, totaling around \$12 trillion nationwide. In times of financial hardship, alleviating mortgage burdens is essential for supporting affected households. The mortgage servicing industry plays a vital role in offering this assistance, yet there has been limited research modelling the complex relationship between households and servicers. To bridge this gap, we developed an agent-based model that explores household behavior and the effectiveness of relief measures during financial distress. Our model represents households as adaptive learning agents with realistic financial attributes. These households experience exogenous income shocks, which may influence their ability to make mortgage payments. Mortgage servicers provide relief options to these households, who then choose the most suitable relief based on their unique financial circumstances and individual preferences. We analyze the impact of various external shocks and the success of different mortgage relief strategies on specific borrower subgroups. Through this analysis, we show that our model can not only replicate real-world mortgage studies but also act as a tool for conducting a broad range of what-if scenario analyses. Our approach offers fine-grained insights that can inform the development of more effective and inclusive mortgage relief solutions.
O3D: Offline Data-driven Discovery and Distillation for Sequential Decision-Making with Large Language Models
Xiao, Yuchen, Sun, Yanchao, Xu, Mengda, Madhushani, Udari, Vann, Jared, Garg, Deepeka, Ganesh, Sumitra
Recent advancements in large language models (LLMs) have exhibited promising performance in solving sequential decision-making problems. By imitating few-shot examples provided in the prompts (i.e., in-context learning), an LLM agent can interact with an external environment and complete given tasks without additional training. However, such few-shot examples are often insufficient to generate high-quality solutions for complex and long-horizon tasks, while the limited context length cannot consume larger-scale demonstrations with long interaction horizons. To this end, we propose an offline learning framework that utilizes offline data at scale (e.g, logs of human interactions) to improve LLM-powered policies without finetuning. The proposed method O3D (Offline Data-driven Discovery and Distillation) automatically discovers reusable skills and distills generalizable knowledge across multiple tasks based on offline interaction data, advancing the capability of solving downstream tasks. Empirical results under two interactive decision-making benchmarks (ALFWorld and WebShop) verify that O3D can notably enhance the decision-making capabilities of LLMs through the offline discovery and distillation process, and consistently outperform baselines across various LLMs.
Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations
Vadori, Nelson, Ardon, Leo, Ganesh, Sumitra, Spooner, Thomas, Amrouni, Selim, Vann, Jared, Xu, Mengda, Zheng, Zeyu, Balch, Tucker, Veloso, Manuela
We study a game between liquidity provider and liquidity taker agents interacting in an over-the-counter market, for which the typical example is foreign exchange. We show how a suitable design of parameterized families of reward functions coupled with shared policy learning constitutes an efficient solution to this problem. By playing against each other, our deep-reinforcement-learning-driven agents learn emergent behaviors relative to a wide spectrum of objectives encompassing profit-and-loss, optimal execution and market share. In particular, we find that liquidity providers naturally learn to balance hedging and skewing, where skewing refers to setting their buy and sell prices asymmetrically as a function of their inventory. We further introduce a novel RL-based calibration algorithm which we found performed well at imposing constraints on the game equilibrium. On the theoretical side, we are able to show convergence rates for our multi-agent policy gradient algorithm under a transitivity assumption, closely related to generalized ordinal potential games.
Phantom -- A RL-driven multi-agent framework to model complex systems
Ardon, Leo, Vann, Jared, Garg, Deepeka, Spooner, Tom, Ganesh, Sumitra
Agent based modelling (ABM) is a computational approach to modelling complex systems by specifying the behaviour of autonomous decision-making components or agents in the system and allowing the system dynamics to emerge from their interactions. Recent advances in the field of Multi-agent reinforcement learning (MARL) have made it feasible to study the equilibrium of complex environments where multiple agents learn simultaneously. However, most ABM frameworks are not RL-native, in that they do not offer concepts and interfaces that are compatible with the use of MARL to learn agent behaviours. In this paper, we introduce a new open-source framework, Phantom, to bridge the gap between ABM and MARL. Phantom is an RL-driven framework for agent-based modelling of complex multi-agent systems including, but not limited to economic systems and markets. The framework aims to provide the tools to simplify the ABM specification in a MARL-compatible way - including features to encode dynamic partial observability, agent utility functions, heterogeneity in agent preferences or types, and constraints on the order in which agents can act (e.g. Stackelberg games, or more complex turn-taking environments). In this paper, we present these features, their design rationale and present two new environments leveraging the framework.
ABIDES-Gym: Gym Environments for Multi-Agent Discrete Event Simulation and Application to Financial Markets
Amrouni, Selim, Moulin, Aymeric, Vann, Jared, Vyetrenko, Svitlana, Balch, Tucker, Veloso, Manuela
Model-free Reinforcement Learning (RL) requires the ability to sample trajectories by taking actions in the original problem environment or a simulated version of it. Breakthroughs in the field of RL have been largely facilitated by the development of dedicated open source simulators with easy to use frameworks such as OpenAI Gym and its Atari environments. In this paper we propose to use the OpenAI Gym framework on discrete event time based Discrete Event Multi-Agent Simulation (DEMAS). We introduce a general technique to wrap a DEMAS simulator into the Gym framework. We expose the technique in detail and implement it using the simulator ABIDES as a base. We apply this work by specifically using the markets extension of ABIDES, ABIDES-Markets, and develop two benchmark financial markets OpenAI Gym environments for training daily investor and execution agents. As a result, these two environments describe classic financial problems with a complex interactive market behavior response to the experimental agent's action.
Towards a fully RL-based Market Simulator
Ardon, Leo, Vadori, Nelson, Spooner, Thomas, Xu, Mengda, Vann, Jared, Ganesh, Sumitra
We present a new financial framework where two families of RL-based agents representing the Liquidity Providers and Liquidity Takers learn simultaneously to satisfy their objective. Thanks to a parametrized reward formulation and the use of Deep RL, each group learns a shared policy able to generalize and interpolate over a wide range of behaviors. This is a step towards a fully RL-based market simulator replicating complex market conditions particularly suited to study the dynamics of the financial market under various scenarios.