Goto

Collaborating Authors

 Van Ngo, Linh


Preserving Generalization of Language models in Few-shot Continual Relation Extraction

arXiv.org Artificial Intelligence

Few-shot Continual Relations Extraction (FCRE) is an emerging and dynamic area of study where models can sequentially integrate knowledge from new relations with limited labeled data while circumventing catastrophic forgetting and preserving prior knowledge from pre-trained backbones. In this work, we introduce a novel method that leverages often-discarded language model heads. By employing these components via a mutual information maximization strategy, our approach helps maintain prior knowledge from the pre-trained backbone and strategically aligns the primary classification head, thereby enhancing model performance. Furthermore, we explore the potential of Large Language Models (LLMs), renowned for their wealth of knowledge, in addressing FCRE challenges. Our comprehensive experimental results underscore the efficacy of the proposed method and offer valuable insights for future work.


Mixture of Experts Meets Prompt-Based Continual Learning

arXiv.org Artificial Intelligence

Exploiting the power of pre-trained models, prompt-based approaches stand out compared to other continual learning solutions in effectively preventing catastrophic forgetting, even with very few learnable parameters and without the need for a memory buffer. While existing prompt-based continual learning methods excel in leveraging prompts for state-of-the-art performance, they often lack a theoretical explanation for the effectiveness of prompting. This paper conducts a theoretical analysis to unravel how prompts bestow such advantages in continual learning, thus offering a new perspective on prompt design. We first show that the attention block of pre-trained models like Vision Transformers inherently encodes a special mixture of experts architecture, characterized by linear experts and quadratic gating score functions. This realization drives us to provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts, thereby inspiring the design of a novel gating mechanism termed Non-linear Residual Gates (NoRGa). Through the incorporation of non-linear activation and residual connection, NoRGa enhances continual learning performance while preserving parameter efficiency. The effectiveness of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and pretraining paradigms.