Van Hentenryck, Pascal
Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks
Ojha, Ritesh, Chen, Wenbo, Zhang, Hanyu, Khir, Reem, Erera, Alan, Van Hentenryck, Pascal
The load planning problem is a critical challenge in service network design for parcel carriers: it decides how many trailers (or loads) to assign for dispatch over time between pairs of terminals. Another key challenge is to determine a flow plan, which specifies how parcel volumes are assigned to planned loads. This paper considers the Dynamic Load Planning Problem (DLPP) that considers both flow and load planning challenges jointly to adjust loads and flows as the demand forecast changes over time before the day of operations. The paper aims at developing a decision-support tool to inform planners making these decisions at terminals across the network. The paper formulates the DLPP as a MIP and shows that it admits a large number of symmetries in a network where each commodity can be routed through primary and alternate paths. As a result, an optimization solver may return fundamentally different solutions to closely related problems, confusing planners and reducing trust in optimization. To remedy this limitation, the paper proposes a Goal-Directed Optimization that eliminates those symmetries by generating optimal solutions staying close to a reference plan. The paper also proposes an optimization proxy to address the computational challenges of the optimization models. The proxy combines a machine learning model and a feasibility restoration model and finds solutions that satisfy real-time constraints imposed by planners-in-the-loop. An extensive computational study on industrial instances shows that the optimization proxy is around 10 times faster than the commercial solver in obtaining the same quality solutions and orders of magnitude faster for generating solutions that are consistent with each other. The proposed approach also demonstrates the benefits of the DLPP for load consolidation, and the significant savings obtained from combining machine learning and optimization.
AI4OPT: AI Institute for Advances in Optimization
Van Hentenryck, Pascal, Dalmeijer, Kevin
This article is a short introduction to AI4OPT, the NSF AI Institute for Advances in Optimization. AI4OPT fuses AI and Optimization, inspired by end-use cases in supply chains, energy systems, chip design and manufacturing, and sustainable food systems. AI4OPT also applies its "teaching the teachers" philosophy to provide longitudinal educational pathways in AI for engineering.
Confidence-Aware Graph Neural Networks for Learning Reliability Assessment Commitments
Park, Seonho, Chen, Wenbo, Han, Dahye, Tanneau, Mathieu, Van Hentenryck, Pascal
Reliability Assessment Commitment (RAC) Optimization is increasingly important in grid operations due to larger shares of renewable generations in the generation mix and increased prediction errors. Independent System Operators (ISOs) also aim at using finer time granularities, longer time horizons, and possibly stochastic formulations for additional economic and reliability benefits. The goal of this paper is to address the computational challenges arising in extending the scope of RAC formulations. It presents RACLearn that (1) uses a Graph Neural Network (GNN) based architecture to predict generator commitments and active line constraints, (2) associates a confidence value to each commitment prediction, (3) selects a subset of the high-confidence predictions, which are (4) repaired for feasibility, and (5) seeds a state-of-the-art optimization algorithm with feasible predictions and active constraints. Experimental results on exact RAC formulations used by the Midcontinent Independent System Operator (MISO) and an actual transmission network (8965 transmission lines, 6708 buses, 1890 generators, and 6262 load units) show that the RACLearn framework can speed up RAC optimization by factors ranging from 2 to 4 with negligible loss in solution quality.
Compact Optimization Learning for AC Optimal Power Flow
Park, Seonho, Chen, Wenbo, Mak, Terrence W. K., Van Hentenryck, Pascal
This paper reconsiders end-to-end learning approaches to the Optimal Power Flow (OPF). Existing methods, which learn the input/output mapping of the OPF, suffer from scalability issues due to the high dimensionality of the output space. This paper first shows that the space of optimal solutions can be significantly compressed using principal component analysis (PCA). It then proposes Compact Learning, a new method that learns in a subspace of the principal components before translating the vectors into the original output space. This compression reduces the number of trainable parameters substantially, improving scalability and effectiveness. Compact Learning is evaluated on a variety of test cases from the PGLib with up to 30,000 buses. The paper also shows that the output of Compact Learning can be used to warm-start an exact AC solver to restore feasibility, while bringing significant speed-ups.
Artificial Intelligence/Operations Research Workshop 2 Report Out
Dickerson, John, Dilkina, Bistra, Ding, Yu, Gupta, Swati, Van Hentenryck, Pascal, Koenig, Sven, Krishnan, Ramayya, Kulkarni, Radhika, Gill, Catherine, Griffin, Haley, Hunter, Maddy, Schwartz, Ann
Artificial intelligence (AI) has received significant attention in recent years, primarily due to breakthroughs in game playing, computer vision, and natural language processing that captured the imagination of the scientific community and the public at large. Many businesses, industries, and academic disciplines are now contemplating the application of AI to their own challenges. The federal government in the US and other countries have also invested significantly in advancing AI research and created funding initiatives and programs to promote greater collaboration across multiple communities. Some of the investment examples in the US include the establishment of the National AI Initiative Office, the launch of the National AI Research Resource Task Force, and more recently, the establishment of the National AI Advisory Committee. In 2021 INFORMS and ACM SIGAI joined together with the Computing Community Consortium (CCC) to organize a series of three workshops. The objective for this workshop series is to explore ways to exploit the synergies of the AI and Operations Research (OR) communities to transform decision making.
Redrawing attendance boundaries to promote racial and ethnic diversity in elementary schools
Gillani, Nabeel, Beeferman, Doug, Vega-Pourheydarian, Christine, Overney, Cassandra, Van Hentenryck, Pascal, Roy, Deb
Most US school districts draw "attendance boundaries" to define catchment areas that assign students to schools near their homes, often recapitulating neighborhood demographic segregation in schools. Focusing on elementary schools, we ask: how much might we reduce school segregation by redrawing attendance boundaries? Combining parent preference data with methods from combinatorial optimization, we simulate alternative boundaries for 98 US school districts serving over 3 million elementary-aged students, minimizing White/non-White segregation while mitigating changes to travel times and school sizes. Across districts, we observe a median 14% relative decrease in segregation, which we estimate would require approximately 20\% of students to switch schools and, surprisingly, a slight reduction in travel times. We release a public dashboard depicting these alternative boundaries (https://www.schooldiversity.org/) and invite both school boards and their constituents to evaluate their viability. Our results show the possibility of greater integration without significant disruptions for families.
Changes in Commuter Behavior from COVID-19 Lockdowns in the Atlanta Metropolitan Area
Santanam, Tejas, Trasatti, Anthony, Zhang, Hanyu, Riley, Connor, Van Hentenryck, Pascal, Krishnan, Ramayya
This paper analyzes the impact of COVID-19 related lockdowns in the Atlanta, Georgia metropolitan area by examining commuter patterns in three periods: prior to, during, and after the pandemic lockdown. A cellular phone location dataset is utilized in a novel pipeline to infer the home and work locations of thousands of users from the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. The coordinates derived from the clustering are put through a reverse geocoding process from which word embeddings are extracted in order to categorize the industry of each work place based on the workplace name and Point of Interest (POI) mapping. Frequencies of commute from home locations to work locations are analyzed in and across all three time periods. Public health and economic factors are discussed to explain potential reasons for the observed changes in commuter patterns.
Privacy and Bias Analysis of Disclosure Avoidance Systems
Zhu, Keyu, Fioretto, Ferdinando, Van Hentenryck, Pascal, Das, Saswat, Task, Christine
Disclosure avoidance (DA) systems are used to safeguard the confidentiality of data while allowing it to be analyzed and disseminated for analytic purposes. These methods, e.g., cell suppression, swapping, and k-anonymity, are commonly applied and may have significant societal and economic implications. However, a formal analysis of their privacy and bias guarantees has been lacking. This paper presents a framework that addresses this gap: it proposes differentially private versions of these mechanisms and derives their privacy bounds. In addition, the paper compares their performance with traditional differential privacy mechanisms in terms of accuracy and fairness on US Census data release and classification tasks. The results show that, contrary to popular beliefs, traditional differential privacy techniques may be superior in terms of accuracy and fairness to differential private counterparts of widely used DA mechanisms.
Two-Stage Learning For the Flexible Job Shop Scheduling Problem
Chen, Wenbo, Khir, Reem, Van Hentenryck, Pascal
The Flexible Job-shop Scheduling Problem (FJSP) is an important combinatorial optimization problem that arises in manufacturing and service settings. FJSP is composed of two subproblems, an assignment problem that assigns tasks to machines, and a scheduling problem that determines the starting times of tasks on their chosen machines. Solving FJSP instances of realistic size and composition is an ongoing challenge even under simplified, deterministic assumptions. Motivated by the inevitable randomness and uncertainties in supply chains, manufacturing, and service operations, this paper investigates the potential of using a deep learning framework to generate fast and accurate approximations for FJSP. In particular, this paper proposes a two-stage learning framework 2SLFJSP that explicitly models the hierarchical nature of FJSP decisions, uses a confidence-aware branching scheme to generate appropriate instances for the scheduling stage from the assignment predictions and leverages a novel symmetry-breaking formulation to improve learnability. 2SL-FJSP is evaluated on instances from the FJSP benchmark library. Results show that 2SL-FJSP can generate high-quality solutions in milliseconds, outperforming a state-of-the-art reinforcement learning approach recently proposed in the literature, and other heuristics commonly used in practice.
Learning Regionally Decentralized AC Optimal Power Flows with ADMM
Mak, Terrence W. K., Chatzos, Minas, Tanneau, Mathieu, Van Hentenryck, Pascal
One potential future for the next generation of smart grids is the use of decentralized optimization algorithms and secured communications for coordinating renewable generation (e.g., wind/solar), dispatchable devices (e.g., coal/gas/nuclear generations), demand response, battery & storage facilities, and topology optimization. The Alternating Direction Method of Multipliers (ADMM) has been widely used in the community to address such decentralized optimization problems and, in particular, the AC Optimal Power Flow (AC-OPF). This paper studies how machine learning may help in speeding up the convergence of ADMM for solving AC-OPF. It proposes a novel decentralized machine-learning approach, namely ML-ADMM, where each agent uses deep learning to learn the consensus parameters on the coupling branches. The paper also explores the idea of learning only from ADMM runs that exhibit high-quality convergence properties, and proposes filtering mechanisms to select these runs. Experimental results on test cases based on the French system demonstrate the potential of the approach in speeding up the convergence of ADMM significantly.