Goto

Collaborating Authors

 Van Haaren, Jan


Who Will Win It? An In-game Win Probability Model for Football

arXiv.org Machine Learning

In-game win probability is a statistical metric that provides a sports team's likelihood of winning at any given point in a game, based on the performance of historical teams in the same situation. In-game win-probability models have been extensively studied in baseball, basketball and American football. These models serve as a tool to enhance the fan experience, evaluate in game-decision making and measure the risk-reward balance for coaching decisions. In contrast, they have received less attention in association football, because its low-scoring nature makes it far more challenging to analyze. In this paper, we build an in-game win probability model for football. Specifically, we first show that porting existing approaches, both in terms of the predictive models employed and the features considered, does not yield good in-game win-probability estimates for football. Second, we introduce our own Bayesian statistical model that utilizes a set of eight variables to predict the running win, tie and loss probabilities for the home team. We train our model using event data from the last four seasons of the major European football competitions. Our results indicate that our model provides well-calibrated probabilities. Finally, we elaborate on two use cases for our win probability metric: enhancing the fan experience and evaluating performance in crucial situations.


Distinguishing Between Roles of Football Players in Play-by-play Match Event Data

arXiv.org Machine Learning

Over the last few decades, the player recruitment process in professional football has evolved into a multi-billion industry and has thus become of vital importance. To gain insights into the general level of their candidate reinforcements, many professional football clubs have access to extensive video footage and advanced statistics. However, the question whether a given player would fit the team's playing style often still remains unanswered. In this paper, we aim to bridge that gap by proposing a set of 21 player roles and introducing a method for automatically identifying the most applicable roles for each player from play-by-play event data collected during matches.


Actions Speak Louder Than Goals: Valuing Player Actions in Soccer

arXiv.org Machine Learning

Assessing the impact of the individual actions performed by soccer players during games is a crucial aspect of the player recruitment process. Unfortunately, most traditional metrics fall short in addressing this task as they either focus on rare events like shots and goals alone or fail to account for the context in which the actions occurred. This paper introduces a novel advanced soccer metric for valuing any type of individual player action on the pitch, be it with or without the ball. Our metric values each player action based on its impact on the game outcome while accounting for the circumstances under which the action happened. When applied to on-the-ball actions like passes, dribbles, and shots alone, our metric identifies Argentine forward Lionel Messi, French teenage star Kylian Mbapp\'e, and Belgian winger Eden Hazard as the most effective players during the 2016/2017 season.