Not enough data to create a plot.
Try a different view from the menu above.
Valmianski, Ilya
Injecting knowledge into language generation: a case study in auto-charting after-visit care instructions from medical dialogue
Eremeev, Maksim, Valmianski, Ilya, Amatriain, Xavier, Kannan, Anitha
Factual correctness is often the limiting factor in practical applications of natural language generation in high-stakes domains such as healthcare. An essential requirement for maintaining factuality is the ability to deal with rare tokens. This paper focuses on rare tokens that appear in both the source and the reference sequences, and which, when missed during generation, decrease the factual correctness of the output text. For high-stake domains that are also knowledge-rich, we show how to use knowledge to (a) identify which rare tokens that appear in both source and reference are important and (b) uplift their conditional probability. We introduce the ``utilization rate'' that encodes knowledge and serves as a regularizer by maximizing the marginal probability of selected tokens. We present a study in a knowledge-rich domain of healthcare, where we tackle the problem of generating after-visit care instructions based on patient-doctor dialogues. We verify that, in our dataset, specific medical concepts with high utilization rates are underestimated by conventionally trained sequence-to-sequence models. We observe that correcting this with our approach to knowledge injection reduces the uncertainty of the model as well as improves factuality and coherence without negatively impacting fluency.
Dialogue-Contextualized Re-ranking for Medical History-Taking
Zhu, Jian, Valmianski, Ilya, Kannan, Anitha
AI-driven medical history-taking is an important component in symptom checking, automated patient intake, triage, and other AI virtual care applications. As historytaking is extremely varied, machine learning models require a significant amount of data to train. To overcome this challenge, existing systems are developed using indirect data or expert knowledge. This leads to a training-inference gap as models are trained on different kinds of data than what they observe at inference time. In this work, we present a two-stage re-ranking approach that helps close the training-inference gap by re-ranking the first-stage question candidates using a dialogue-contextualized model. For this, we propose a new model, global re-ranker, which cross-encodes the dialogue with all questions simultaneously, and compare it with several existing neural baselines. We test both transformer and S4-based language model backbones. We find that relative to the expert system, the best performance is achieved by our proposed global re-ranker with a transformer backbone, resulting in a 30% higher normalized discount cumulative gain (nDCG) and a 77% higher mean average precision (mAP). As part of this work, we also release pre-trained checkpoints for bi-directional and autoregressive S4 models trained on Wikipedia and PubMed data.
OSLAT: Open Set Label Attention Transformer for Medical Entity Retrieval and Span Extraction
Li, Raymond, Valmianski, Ilya, Deng, Li, Amatriain, Xavier, Kannan, Anitha
Medical entity span extraction and linking are critical steps for many healthcare NLP tasks. Most existing entity extraction methods either have a fixed vocabulary of medical entities or require span annotations. In this paper, we propose a method for linking an open set of entities that does not require any span annotations. Our method, Open Set Label Attention Transformer (OSLAT), uses the label-attention mechanism to learn candidate-entity contextualized text representations. We find that OSLAT can not only link entities but is also able to implicitly learn spans associated with entities. We evaluate OSLAT on two tasks: (1) span extraction trained without explicit span annotations, and (2) entity linking trained without span-level annotation. We test the generalizability of our method by training two separate models on two datasets with low entity overlap and comparing cross-dataset performance.
Adding more data does not always help: A study in medical conversation summarization with PEGASUS
Nair, Varun, Katariya, Namit, Amatriain, Xavier, Valmianski, Ilya, Kannan, Anitha
Medical conversation summarization is integral in capturing information gathered during interactions between patients and physicians. Summarized conversations are used to facilitate patient hand-offs between physicians, and as part of providing care in the future. Summaries, however, can be time-consuming to produce and require domain expertise. Modern pre-trained NLP models such as PEGASUS have emerged as capable alternatives to human summarization, reaching state-of-the-art performance on many summarization benchmarks. However, many downstream tasks still require at least moderately sized datasets to achieve satisfactory performance. In this work we (1) explore the effect of dataset size on transfer learning medical conversation summarization using PEGASUS and (2) evaluate various iterative labeling strategies in the low-data regime, following their success in the classification setting. We find that model performance saturates with increase in dataset size and that the various active-learning strategies evaluated all show equivalent performance consistent with simple dataset size increase. We also find that naive iterative pseudo-labeling is on-par or slightly worse than no pseudo-labeling. Our work sheds light on the successes and challenges of translating low-data regime techniques in classification to medical conversation summarization and helps guides future work in this space. Relevant code available at \url{https://github.com/curai/curai-research/tree/main/medical-summarization-ML4H-2021}.
MEDCOD: A Medically-Accurate, Emotive, Diverse, and Controllable Dialog System
Compton, Rhys, Valmianski, Ilya, Deng, Li, Huang, Costa, Katariya, Namit, Amatriain, Xavier, Kannan, Anitha
We present MEDCOD, a Medically-Accurate, Emotive, Diverse, and Controllable Dialog system with a unique approach to the natural language generator module. MEDCOD has been developed and evaluated specifically for the history taking task. It integrates the advantage of a traditional modular approach to incorporate (medical) domain knowledge with modern deep learning techniques to generate flexible, human-like natural language expressions. Two key aspects of MEDCOD's natural language output are described in detail. First, the generated sentences are emotive and empathetic, similar to how a doctor would communicate to the patient. Second, the generated sentence structures and phrasings are varied and diverse while maintaining medical consistency with the desired medical concept (provided by the dialogue manager module of MEDCOD). Experimental results demonstrate the effectiveness of our approach in creating a human-like medical dialogue system. Relevant code is available at https://github.com/curai/curai-research/tree/main/MEDCOD