Goto

Collaborating Authors

 Vallurupalli, Sai


UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation

arXiv.org Artificial Intelligence

The aim of SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages" is to develop models for identifying semantic textual relatedness (STR) between two sentences using multiple languages (14 African and Asian languages) and settings (supervised, unsupervised, and cross-lingual). Large language models (LLMs) have shown impressive performance on several natural language understanding tasks such as multilingual machine translation (MMT), semantic similarity (STS), and encoding sentence embeddings. Using a combination of LLMs that perform well on these tasks, we developed two STR models, $\textit{TranSem}$ and $\textit{FineSem}$, for the supervised and cross-lingual settings. We explore the effectiveness of several training methods and the usefulness of machine translation. We find that direct fine-tuning on the task is comparable to using sentence embeddings and translating to English leads to better performance for some languages. In the supervised setting, our model performance is better than the official baseline for 3 languages with the remaining 4 performing on par. In the cross-lingual setting, our model performance is better than the baseline for 3 languages (leading to $1^{st}$ place for Africaans and $2^{nd}$ place for Indonesian), is on par for 2 languages and performs poorly on the remaining 7 languages. Our code is publicly available at https://github.com/dipta007/SemEval24-Task8.


POQue: Asking Participant-specific Outcome Questions for a Deeper Understanding of Complex Events

arXiv.org Artificial Intelligence

Knowledge about outcomes is critical for complex event understanding but is hard to acquire. We show that by pre-identifying a participant in a complex event, crowd workers are able to (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground the outcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of 8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96 weighted Fleiss Kappa). Our dataset, POQue (Participant Outcome Questions), enables the exploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant's influence over the event culmination.