Valdenegro-Toro, Matias
The Marine Debris Forward-Looking Sonar Datasets
Valdenegro-Toro, Matias, Padmanabhan, Deepan Chakravarthi, Singh, Deepak, Wehbe, Bilal, Petillot, Yvan
Sonar sensing is fundamental for underwater robotics, but limited by capabilities of AI systems, which need large training datasets. Public data in sonar modalities is lacking. This paper presents the Marine Debris Forward-Looking Sonar datasets, with three different settings (watertank, turntable, flooded quarry) increasing dataset diversity and multiple computer vision tasks: object classification, object detection, semantic segmentation, patch matching, and unsupervised learning. We provide full dataset description, basic analysis and initial results for some tasks. We expect the research community will benefit from this dataset, which is publicly available at https://doi.org/10.5281/zenodo.15101686
Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
Bruegger, Josh, Catana, Diana Ioana, Macovaz, Vanja, Valdenegro-Toro, Matias, Sabatelli, Matthia, Zullich, Marco
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Valdenegro-Toro, Matias, Zullich, Marco
Inputs to machine learning models can have associated noise or uncertainties, but they are often ignored and not modelled. It is unknown if Bayesian Neural Networks and their approximations are able to consider uncertainty in their inputs. In this paper we build a two input Bayesian Neural Network (mean and standard deviation) and evaluate its capabilities for input uncertainty estimation across different methods like Ensembles, MC-Dropout, and Flipout. Our results indicate that only some uncertainty estimation methods for approximate Bayesian NNs can model input uncertainty, in particular Ensembles and Flipout.
Adaptive Prompt Tuning: Vision Guided Prompt Tuning with Cross-Attention for Fine-Grained Few-Shot Learning
Brouwer, Eric, van Woerden, Jan Erik, Burghouts, Gertjan, Valdenegro-Toro, Matias, Zullich, Marco
Few-shot, fine-grained classification in computer vision poses significant challenges due to the need to differentiate subtle class distinctions with limited data. This paper presents a novel method that enhances the Contrastive Language-Image Pre-Training (CLIP) model through adaptive prompt tuning, guided by real-time visual inputs. Unlike existing techniques such as Context Optimization (CoOp) and Visual Prompt Tuning (VPT), which are constrained by static prompts or visual token reliance, the proposed approach leverages a cross-attention mechanism to dynamically refine text prompts for the image at hand. This enables an image-specific alignment of textual features with image patches extracted from the Vision Transformer, making the model more effective for datasets with high intra-class variance and low inter-class differences. The method is evaluated on several datasets, including CUBirds, Oxford Flowers, and FGVC Aircraft, showing significant performance gains over static prompt tuning approaches. To ensure these performance gains translate into trustworthy predictions, we integrate Monte-Carlo Dropout in our approach to improve the reliability of the model predictions and uncertainty estimates. This integration provides valuable insights into the model's predictive confidence, helping to identify when predictions can be trusted and when additional verification is necessary. This dynamic approach offers a robust solution, advancing the state-of-the-art for few-shot fine-grained classification.
Forecasting Smog Clouds With Deep Learning
Oldenburg, Valentijn, Cardenas-Cartagena, Juan, Valdenegro-Toro, Matias
In this proof-of-concept study, we conduct multivariate timeseries forecasting for the concentrations of nitrogen dioxide (NO2), ozone (O3), and (fine) particulate matter (PM10 & PM2.5) with meteorological covariates between two locations using various deep learning models, with a focus on long short-term memory (LSTM) and gated recurrent unit (GRU) architectures. In particular, we propose an integrated, hierarchical model architecture inspired by air pollution dynamics and atmospheric science that employs multi-task learning and is benchmarked by unidirectional and fully-connected models. Results demonstrate that, above all, the hierarchical GRU proves itself as a competitive and efficient method for forecasting the concentration of smog-related pollutants.
Terrain Classification Enhanced with Uncertainty for Space Exploration Robots from Proprioceptive Data
รlvarez, Mariela De Lucas, Guo, Jichen, Domรญnguez, Raul, Valdenegro-Toro, Matias
Terrain Classification is an essential task in space exploration, where unpredictable environments are difficult to observe using only exteroceptive sensors such as vision. Implementing Neural Network classifiers can have high performance but can be deemed untrustworthy as they lack transparency, which makes them unreliable for taking high-stakes decisions during mission planning. We address this by proposing Neural Networks with Uncertainty Quantification in Terrain Classification. We enable our Neural Networks with Monte Carlo Dropout, DropConnect, and Flipout in time series-capable architectures using only proprioceptive data as input. We use Bayesian Optimization with Hyperband for efficient hyperparameter optimization to find optimal models for trustworthy terrain classification.
Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation
Valdenegro-Toro, Matias, de Jong, Ivo Pascal, Zullich, Marco
Modelling uncertainty in Machine Learning models is essential for achieving safe and reliable predictions. Most research on uncertainty focuses on output uncertainty (predictions), but minimal attention is paid to uncertainty at inputs. We propose a method for propagating uncertainty in the inputs through a Neural Network that is simultaneously able to estimate input, data, and model uncertainty. Our results show that this propagation of input uncertainty results in a more stable decision boundary even under large amounts of input noise than comparatively simple Monte Carlo sampling. Additionally, we discuss and demonstrate that input uncertainty, when propagated through the model, results in model uncertainty at the outputs. The explicit incorporation of input uncertainty may be beneficial in situations where the amount of input uncertainty is known, though good datasets for this are still needed.
Overconfidence is Key: Verbalized Uncertainty Evaluation in Large Language and Vision-Language Models
Groot, Tobias, Valdenegro-Toro, Matias
Language and Vision-Language Models (LLMs/VLMs) have revolutionized the field of AI by their ability to generate human-like text and understand images, but ensuring their reliability is crucial. This paper aims to evaluate the ability of LLMs (GPT4, GPT-3.5, LLaMA2, and PaLM 2) and VLMs (GPT4V and Gemini Pro Vision) to estimate their verbalized uncertainty via prompting. We propose the new Japanese Uncertain Scenes (JUS) dataset, aimed at testing VLM capabilities via difficult queries and object counting, and the Net Calibration Error (NCE) to measure direction of miscalibration. Results show that both LLMs and VLMs have a high calibration error and are overconfident most of the time, indicating a poor capability for uncertainty estimation. Additionally we develop prompts for regression tasks, and we show that VLMs have poor calibration when producing mean/standard deviation and 95% confidence intervals.
A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation
Abdelrahman, Ahmed Faisal, Valdenegro-Toro, Matias, Bennewitz, Maren, Plรถger, Paul G.
Neuromorphic computing mimics computational principles of the brain in $\textit{silico}$ and motivates research into event-based vision and spiking neural networks (SNNs). Event cameras (ECs) exclusively capture local intensity changes and offer superior power consumption, response latencies, and dynamic ranges. SNNs replicate biological neuronal dynamics and have demonstrated potential as alternatives to conventional artificial neural networks (ANNs), such as in reducing energy expenditure and inference time in visual classification. Nevertheless, these novel paradigms remain scarcely explored outside the domain of aerial robots. To investigate the utility of brain-inspired sensing and data processing, we developed a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator. Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN, decoding neural activations into avoidance motions, and adjusting plans using a dynamic motion primitive. We conducted experiments with a Kinova Gen3 arm performing simple reaching tasks that involve obstacles in sets of distinct task scenarios and in comparison to a non-adaptive baseline. Our neuromorphic approach facilitated reliable avoidance of imminent collisions in simulated and real-world experiments, where the baseline consistently failed. Trajectory adaptations had low impacts on safety and predictability criteria. Among the notable SNN properties were the correlation of computations with the magnitude of perceived motions and a robustness to different event emulation methods. Tests with a DAVIS346 EC showed similar performance, validating our experimental event emulation. Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
Uncertainty Quantification for Gradient-based Explanations in Neural Networks
Mulye, Mihir, Valdenegro-Toro, Matias
Explanation methods help understand the reasons for a model's prediction. These methods are increasingly involved in model debugging, performance optimization, and gaining insights into the workings of a model. With such critical applications of these methods, it is imperative to measure the uncertainty associated with the explanations generated by these methods. In this paper, we propose a pipeline to ascertain the explanation uncertainty of neural networks by combining uncertainty estimation methods and explanation methods. We use this pipeline to produce explanation distributions for the CIFAR-10, FER+, and California Housing datasets. By computing the coefficient of variation of these distributions, we evaluate the confidence in the explanation and determine that the explanations generated using Guided Backpropagation have low uncertainty associated with them. Additionally, we compute modified pixel insertion/deletion metrics to evaluate the quality of the generated explanations.