Goto

Collaborating Authors

 Vázquez, Raúl


Your Model is Overconfident, and Other Lies We Tell Ourselves

arXiv.org Artificial Intelligence

The difficulty intrinsic to a given example, rooted in its inherent ambiguity, is a key yet often overlooked factor in evaluating neural NLP models. We investigate the interplay and divergence among various metrics for assessing intrinsic difficulty, including annotator dissensus, training dynamics, and model confidence. Through a comprehensive analysis using 29 models on three datasets, we reveal that while correlations exist among these metrics, their relationships are neither linear nor monotonic. By disentangling these dimensions of uncertainty, we aim to refine our understanding of data complexity and its implications for evaluating and improving NLP models.


I Have an Attention Bridge to Sell You: Generalization Capabilities of Modular Translation Architectures

arXiv.org Artificial Intelligence

Modularity is a paradigm of machine translation with the potential of bringing forth models that are large at training time and small during inference. Within this field of study, modular approaches, and in particular attention bridges, have been argued to improve the generalization capabilities of models by fostering language-independent representations. In the present paper, we study whether modularity affects translation quality; as well as how well modular architectures generalize across different evaluation scenarios. For a given computational budget, we find non-modular architectures to be always comparable or preferable to all modular designs we study.


SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes

arXiv.org Artificial Intelligence

This paper presents the results of the SHROOM, a shared task focused on detecting hallucinations: outputs from natural language generation (NLG) systems that are fluent, yet inaccurate. Such cases of overgeneration put in jeopardy many NLG applications, where correctness is often mission-critical. The shared task was conducted with a newly constructed dataset of 4000 model outputs labeled by 5 annotators each, spanning 3 NLP tasks: machine translation, paraphrase generation and definition modeling. The shared task was tackled by a total of 58 different users grouped in 42 teams, out of which 27 elected to write a system description paper; collectively, they submitted over 300 prediction sets on both tracks of the shared task. We observe a number of key trends in how this approach was tackled -- many participants rely on a handful of model, and often rely either on synthetic data for fine-tuning or zero-shot prompting strategies. While a majority of the teams did outperform our proposed baseline system, the performances of top-scoring systems are still consistent with a random handling of the more challenging items.


MAMMOTH: Massively Multilingual Modular Open Translation @ Helsinki

arXiv.org Artificial Intelligence

NLP in the age of monolithic large language models is approaching its limits in terms of size and information that can be handled. The trend goes to modularization, a necessary step into the direction of designing smaller sub-networks and components with specialized functionality. In this paper, we present the MAMMOTH toolkit: a framework designed for training massively multilingual modular machine translation systems at scale, initially derived from OpenNMT-py and then adapted to ensure efficient training across computation clusters. We showcase its efficiency across clusters of A100 and V100 NVIDIA GPUs, and discuss our design philosophy and plans for future information. The toolkit is publicly available online.


Why bother with geometry? On the relevance of linear decompositions of Transformer embeddings

arXiv.org Artificial Intelligence

A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.