Goto

Collaborating Authors

 V, Venktesh


The CLEF-2025 CheckThat! Lab: Subjectivity, Fact-Checking, Claim Normalization, and Retrieval

arXiv.org Artificial Intelligence

The CheckThat! lab aims to advance the development of innovative technologies designed to identify and counteract online disinformation and manipulation efforts across various languages and platforms. The first five editions focused on key tasks in the information verification pipeline, including check-worthiness, evidence retrieval and pairing, and verification. Since the 2023 edition, the lab has expanded its scope to address auxiliary tasks that support research and decision-making in verification. In the 2025 edition, the lab revisits core verification tasks while also considering auxiliary challenges. Task 1 focuses on the identification of subjectivity (a follow-up from CheckThat! 2024), Task 2 addresses claim normalization, Task 3 targets fact-checking numerical claims, and Task 4 explores scientific web discourse processing. These tasks present challenging classification and retrieval problems at both the document and span levels, including multilingual settings.


EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning

arXiv.org Artificial Intelligence

Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (https://github.com/kiranpurohit/EXPLORA).


The Surprising Effectiveness of Rankers Trained on Expanded Queries

arXiv.org Artificial Intelligence

An important problem in text-ranking systems is handling the hard queries that form the tail end of the query distribution. The difficulty may arise due to the presence of uncommon, underspecified, or incomplete queries. In this work, we improve the ranking performance of hard or difficult queries without compromising the performance of other queries. Firstly, we do LLM based query enrichment for training queries using relevant documents. Next, a specialized ranker is fine-tuned only on the enriched hard queries instead of the original queries. We combine the relevance scores from the specialized ranker and the base ranker, along with a query performance score estimated for each query. Our approach departs from existing methods that usually employ a single ranker for all queries, which is biased towards easy queries, which form the majority of the query distribution. In our extensive experiments on the DL-Hard dataset, we find that a principled query performance based scoring method using base and specialized ranker offers a significant improvement of up to 25% on the passage ranking task and up to 48.4% on the document ranking task when compared to the baseline performance of using original queries, even outperforming SOTA model.


QuanTemp: A real-world open-domain benchmark for fact-checking numerical claims

arXiv.org Artificial Intelligence

Automated fact checking has gained immense interest to tackle the growing misinformation in the digital era. Existing systems primarily focus on synthetic claims on Wikipedia, and noteworthy progress has also been made on real-world claims. In this work, we release QuanTemp, a diverse, multi-domain dataset focused exclusively on numerical claims, encompassing temporal, statistical and diverse aspects with fine-grained metadata and an evidence collection without leakage. This addresses the challenge of verifying real-world numerical claims, which are complex and often lack precise information, not addressed by existing works that mainly focus on synthetic claims. We evaluate and quantify the limitations of existing solutions for the task of verifying numerical claims. We also evaluate claim decomposition based methods, numerical understanding based models and our best baselines achieves a macro-F1 of 58.32. This demonstrates that QuanTemp serves as a challenging evaluation set for numerical claim verification.


In-Context Ability Transfer for Question Decomposition in Complex QA

arXiv.org Artificial Intelligence

Answering complex questions is a challenging task that requires question decomposition and multistep reasoning for arriving at the solution. While existing supervised and unsupervised approaches are specialized to a certain task and involve training, recently proposed prompt-based approaches offer generalizable solutions to tackle a wide variety of complex question-answering (QA) tasks. However, existing prompt-based approaches that are effective for complex QA tasks involve expensive hand annotations from experts in the form of rationales and are not generalizable to newer complex QA scenarios and tasks. We propose, icat (In-Context Ability Transfer) which induces reasoning capabilities in LLMs without any LLM fine-tuning or manual annotation of in-context samples. We transfer the ability to decompose complex questions to simpler questions or generate step-by-step rationales to LLMs, by careful selection from available data sources of related tasks. We also propose an automated uncertainty-aware exemplar selection approach for selecting examples from transfer data sources. Finally, we conduct large-scale experiments on a variety of complex QA tasks involving numerical reasoning, compositional complex QA, and heterogeneous complex QA which require decomposed reasoning. We show that ICAT convincingly outperforms existing prompt-based solutions without involving any model training, showcasing the benefits of re-using existing abilities.


Context Aware Query Rewriting for Text Rankers using LLM

arXiv.org Artificial Intelligence

Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.


MWPRanker: An Expression Similarity Based Math Word Problem Retriever

arXiv.org Artificial Intelligence

Math Word Problems (MWPs) in online assessments help test the ability of the learner to make critical inferences by interpreting the linguistic information in them. To test the mathematical reasoning capabilities of the learners, sometimes the problem is rephrased or the thematic setting of the original MWP is changed. Since manual identification of MWPs with similar problem models is cumbersome, we propose a tool in this work for MWP retrieval. We propose a hybrid approach to retrieve similar MWPs with the same problem model. In our work, the problem model refers to the sequence of operations to be performed to arrive at the solution. We demonstrate that our tool is useful for the mentioned tasks and better than semantic similarity-based approaches, which fail to capture the arithmetic and logical sequence of the MWPs. A demo of the tool can be found at https://www.youtube.com/watch?v=gSQWP3chFIs


Query Understanding in the Age of Large Language Models

arXiv.org Artificial Intelligence

Querying, conversing, and controlling search and information-seeking interfaces using natural language are fast becoming ubiquitous with the rise and adoption of large-language models (LLM). In this position paper, we describe a generic framework for interactive query-rewriting using LLMs. Our proposal aims to unfold new opportunities for improved and transparent intent understanding while building high-performance retrieval systems using LLMs. A key aspect of our framework is the ability of the rewriter to fully specify the machine intent by the search engine in natural language that can be further refined, controlled, and edited before the final retrieval phase. The ability to present, interact, and reason over the underlying machine intent in natural language has profound implications on transparency, ranking performance, and a departure from the traditional way in which supervised signals were collected for understanding intents. We detail the concept, backed by initial experiments, along with open questions for this interactive query understanding framework.


Enhancing Programming eTextbooks with ChatGPT Generated Counterfactual-Thinking-Inspired Questions

arXiv.org Artificial Intelligence

Digital textbooks have become an integral part of everyday learning tasks. In this work, we consider the use of digital textbooks for programming classes. Generally, students struggle with utilizing textbooks on programming to the maximum, with a possible reason being that the example programs provided as illustration of concepts in these textbooks don't offer sufficient interactivity for students, and thereby not sufficiently motivating to explore or understand these programming examples better. In our work, we explore the idea of enhancing the navigability of intelligent textbooks with the use of "counterfactual" questions, to make students think critically about these programs and enhance possible program comprehension. Inspired from previous works on nudging students on counter factual thinking, we present the possibility to enhance digital textbooks with questions generated using GPT-3.5.


Unsupervised Question Duplicate and Related Questions Detection in e-learning platforms

arXiv.org Artificial Intelligence

Online learning platforms provide diverse questions to gauge the learners' understanding of different concepts. The repository of questions has to be constantly updated to ensure a diverse pool of questions to conduct assessments for learners. However, it is impossible for the academician to manually skim through the large repository of questions to check for duplicates when onboarding new questions from external sources. Hence, we propose a tool QDup in this paper that can surface near-duplicate and semantically related questions without any supervised data. The proposed tool follows an unsupervised hybrid pipeline of statistical and neural approaches for incorporating different nuances in similarity for the task of question duplicate detection. We demonstrate that QDup can detect near-duplicate questions and also suggest related questions for practice with remarkable accuracy and speed from a large repository of questions. The demo video of the tool can be found at https://www.youtube.com/watch?v=loh0_-7XLW4.