Unhelkar, Vaibhav V.
Towards an AI Coach to Infer Team Mental Model Alignment in Healthcare
Seo, Sangwon, Kennedy-Metz, Lauren R., Zenati, Marco A., Shah, Julie A., Dias, Roger D., Unhelkar, Vaibhav V.
Abstract--Shared mental models are critical to team success; however, in practice, team members may have misaligned models due to a variety of factors. In safety-critical domains (e.g., aviation, healthcare), lack of shared mental models can lead to preventable errors and harm. Towards the goal of mitigating such preventable errors, here, we present a Bayesian approach to infer misalignment in team members' mental models during complex healthcare task execution. As an exemplary application, we demonstrate our approach using two simulated team-based scenarios, derived from actual teamwork in cardiac surgery. In these simulated experiments, our approach inferred model misalignment with over 75% recall, thereby providing a building block for enabling computer-assisted interventions to augment human cognition in the operating room and improve teamwork.
Reports of the AAAI 2017 Fall Symposium Series
Flenner, Arjuna (NAVAIR China Lake) | Fraune, Marlena R. (Indiana University) | Hiatt, Laura M. (Naval Research Laboratory (NRL)) | Kendall, Tony (Naval Postgraduate School) | Laird, John E. (University of Michigan) | Lebiere, Christian (Carnegie Mellon University) | Rosenbloom, Paul S. (Institute for Creative Technologies, University of Southern California) | Stein, Frank (IBM) | Topp, Elin A. (Lund University) | Unhelkar, Vaibhav V. (Massachusetts Institute of Technology) | Zhao, Ying (Naval Postgraduate School)
The AAAI 2017 Fall Symposium Series was held Thursday through Saturday, November 9–11, at the Westin Arlington Gateway in Arlington, Virginia, adjacent to Washington, DC. The titles of the six symposia were Artificial Intelligence for Human-Robot Interaction; Cognitive Assistance in Government and Public Sector Applications; Deep Models and Artificial Intelligence for Military Applications: Potentials, Theories, Practices, Tools and Risks; Human-Agent Groups: Studies, Algorithms and Challenges; Natural Communication for Human-Robot Collaboration; and A Standard Model of the Mind. The highlights of each symposium (except the Natural Communication for Human-Robot Collaboration symposium, whose organizers did not submit a report) are presented in this report.
ConTaCT: Deciding to Communicate during Time-Critical Collaborative Tasks in Unknown, Deterministic Domains
Unhelkar, Vaibhav V. (Massachusetts Institute of Technology) | Shah, Julie A. (Massachusetts Institute of Technology)
Communication between agents has the potential to improve team performance of collaborative tasks. However, communication is not free in most domains, requiring agents to reason about the costs and benefits of sharing information. In this work, we develop an online, decentralized communication policy, ConTaCT, that enables agents to decide whether or not to communicate during time-critical collaborative tasks in unknown, deterministic environments. Our approach is motivated by real-world applications, including the coordination of disaster response and search and rescue teams. These settings motivate a model structure that explicitly represents the world model as initially unknown but deterministic in nature, and that de-emphasizes uncertainty about action outcomes. Simulated experiments are conducted in which ConTaCT is compared to other multi-agent communication policies, and results indicate that ConTaCT achieves comparable task performance while substantially reducing communication overhead.