Unger, Benjamin
Leveraging time and parameters for nonlinear model reduction methods
Glas, Silke, Unger, Benjamin
In this paper, we consider model order reduction (MOR) methods for problems with slowly decaying Kolmogorov $n$-widths as, e.g., certain wave-like or transport-dominated problems. To overcome this Kolmogorov barrier within MOR, nonlinear projections are used, which are often realized numerically using autoencoders. These autoencoders generally consist of a nonlinear encoder and a nonlinear decoder and involve costly training of the hyperparameters to obtain a good approximation quality of the reduced system. To facilitate the training process, we show that extending the to-be-reduced system and its corresponding training data makes it possible to replace the nonlinear encoder with a linear encoder without sacrificing accuracy, thus roughly halving the number of hyperparameters to be trained.
Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees -- Technical Report
Frank, Daniel, Latif, Decky Aspandi, Muehlebach, Michael, Unger, Benjamin, Staab, Steffen
Recurrent neural networks are capable of learning the dynamics of an unknown nonlinear system purely from input-output measurements. However, the resulting models do not provide any stability guarantees on the input-output mapping. In this work, we represent a recurrent neural network as a linear time-invariant system with nonlinear disturbances. By introducing constraints on the parameters, we can guarantee finite gain stability and incremental finite gain stability. We apply this identification method to learn the motion of a four-degrees-of-freedom ship that is moving in open water and compare it against other purely learning-based approaches with unconstrained parameters. Our analysis shows that the constrained recurrent neural network has a lower prediction accuracy on the test set, but it achieves comparable results on an out-of-distribution set and respects stability conditions.