Goto

Collaborating Authors

 Uncini, Aurelio


PHemoNet: A Multimodal Network for Physiological Signals

arXiv.org Artificial Intelligence

Emotion recognition is essential across numerous fields, including medical applications and brain-computer interface (BCI). Emotional responses include behavioral reactions, such as tone of voice and body movement, and changes in physiological signals, such as the electroencephalogram (EEG). The latter are involuntary, thus they provide a reliable input for identifying emotions, in contrast to the former which individuals can consciously control. These signals reveal true emotional states without intentional alteration, thus increasing the accuracy of emotion recognition models. However, multimodal deep learning methods from physiological signals have not been significantly investigated. In this paper, we introduce PHemoNet, a fully hypercomplex network for multimodal emotion recognition from physiological signals. In detail, the architecture comprises modality-specific encoders and a fusion module. Both encoders and fusion modules are defined in the hypercomplex domain through parameterized hypercomplex multiplications (PHMs) that can capture latent relations between the different dimensions of each modality and between the modalities themselves. The proposed method outperforms current state-of-the-art models on the MAHNOB-HCI dataset in classifying valence and arousal using electroencephalograms (EEGs) and peripheral physiological signals. The code for this work is available at https://github.com/ispamm/MHyEEG.


Demystifying the Hypercomplex: Inductive Biases in Hypercomplex Deep Learning

arXiv.org Artificial Intelligence

Hypercomplex algebras have recently been gaining prominence in the field of deep learning owing to the advantages of their division algebras over real vector spaces and their superior results when dealing with multidimensional signals in real-world 3D and 4D paradigms. This paper provides a foundational framework that serves as a roadmap for understanding why hypercomplex deep learning methods are so successful and how their potential can be exploited. Such a theoretical framework is described in terms of inductive bias, i.e., a collection of assumptions, properties, and constraints that are built into training algorithms to guide their learning process toward more efficient and accurate solutions. We show that it is possible to derive specific inductive biases in the hypercomplex domains, which extend complex numbers to encompass diverse numbers and data structures. These biases prove effective in managing the distinctive properties of these domains, as well as the complex structures of multidimensional and multimodal signals. This novel perspective for hypercomplex deep learning promises to both demystify this class of methods and clarify their potential, under a unifying framework, and in this way promotes hypercomplex models as viable alternatives to traditional real-valued deep learning for multidimensional signal processing.


Overview of the L3DAS23 Challenge on Audio-Visual Extended Reality

arXiv.org Artificial Intelligence

The primary goal of the L3DAS23 Signal Processing Grand Challenge at ICASSP 2023 is to promote and support collaborative research on machine learning for 3D audio signal processing, with a specific emphasis on 3D speech enhancement and 3D Sound Event Localization and Detection in Extended Reality applications. As part of our latest competition, we provide a brand-new dataset, which maintains the same general characteristics of the L3DAS21 and L3DAS22 datasets, but with first-order Ambisonics recordings from multiple reverberant simulated environments. Moreover, we start exploring an audio-visual scenario by providing images of these environments, as perceived by the different microphone positions and orientations. We also propose updated baseline models for both tasks that can now support audio-image couples as input and a supporting API to replicate our results. Finally, we present the results of the participants. Further details about the challenge are available at https://www.l3das.com/icassp2023.


Generalizing Medical Image Representations via Quaternion Wavelet Networks

arXiv.org Artificial Intelligence

Neural network generalizability is becoming a broad research field due to the increasing availability of datasets from different sources and for various tasks. This issue is even wider when processing medical data, where a lack of methodological standards causes large variations being provided by different imaging centers or acquired with various devices and cofactors. To overcome these limitations, we introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images. The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task, and it can be involved with real, quaternion, or hypercomplex-valued models, generalizing their adoption to single-channel data. QUAVE first extracts different sub-bands through the quaternion wavelet transform, resulting in both low-frequency/approximation bands and high-frequency/fine-grained features. Then, it weighs the most representative set of sub-bands to be involved as input to any other neural model for image processing, replacing standard data samples. We conduct an extensive experimental evaluation comprising different datasets, diverse image analysis, and synthesis tasks including reconstruction, segmentation, and modality translation. We also evaluate QUAVE in combination with both real and quaternion-valued models. Results demonstrate the effectiveness and the generalizability of the proposed framework that improves network performance while being flexible to be adopted in manifold scenarios and robust to domain shifts. The full code is available at: https://github.com/ispamm/QWT.


PHYDI: Initializing Parameterized Hypercomplex Neural Networks as Identity Functions

arXiv.org Artificial Intelligence

Neural models based on hypercomplex algebra systems are growing and prolificating for a plethora of applications, ranging from computer vision to natural language processing. Hand in hand with their adoption, parameterized hypercomplex neural networks (PHNNs) are growing in size and no techniques have been adopted so far to control their convergence at a large scale. In this paper, we study PHNNs convergence and propose parameterized hypercomplex identity initialization (PHYDI), a method to improve their convergence at different scales, leading to more robust performance when the number of layers scales up, while also reaching the same performance with fewer iterations. We show the effectiveness of this approach in different benchmarks and with common PHNNs with ResNets- and Transformer-based architecture. The code is available at https://github.com/ispamm/PHYDI.


Dual Quaternion Ambisonics Array for Six-Degree-of-Freedom Acoustic Representation

arXiv.org Artificial Intelligence

Spatial audio methods are gaining a growing interest due to the spread of immersive audio experiences and applications, such as virtual and augmented reality. For these purposes, 3D audio signals are often acquired through arrays of Ambisonics microphones, each comprising four capsules that decompose the sound field in spherical harmonics. In this paper, we propose a dual quaternion representation of the spatial sound field acquired through an array of two First Order Ambisonics (FOA) microphones. The audio signals are encapsulated in a dual quaternion that leverages quaternion algebra properties to exploit correlations among them. This augmented representation with 6 degrees of freedom (6DOF) involves a more accurate coverage of the sound field, resulting in a more precise sound localization and a more immersive audio experience. We evaluate our approach on a sound event localization and detection (SELD) benchmark. We show that our dual quaternion SELD model with temporal convolution blocks (DualQSELD-TCN) achieves better results with respect to real and quaternion-valued baselines thanks to our augmented representation of the sound field. Full code is available at: https://github.com/ispamm/DualQSELD-TCN.


A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling

arXiv.org Artificial Intelligence

Nonlinear models are known to provide excellent performance in real-world applications that often operate in non-ideal conditions. However, such applications often require online processing to be performed with limited computational resources. To address this problem, we propose a new class of efficient nonlinear models for online applications. The proposed algorithms are based on linear-in-the-parameters (LIP) nonlinear filters using functional link expansions. In order to make this class of functional link adaptive filters (FLAFs) efficient, we propose low-complexity expansions and frequency-domain adaptation of the parameters. Among this family of algorithms, we also define the partitioned-block frequency-domain FLAF, whose implementation is particularly suitable for online nonlinear modeling problems. We assess and compare frequency-domain FLAFs with different expansions providing the best possible tradeoff between performance and computational complexity. Experimental results prove that the proposed algorithms can be considered as an efficient and effective solution for online applications, such as the acoustic echo cancellation, even in the presence of adverse nonlinear conditions and with limited availability of computational resources.


L3DAS22 Challenge: Learning 3D Audio Sources in a Real Office Environment

arXiv.org Artificial Intelligence

The L3DAS22 Challenge is aimed at encouraging the development of machine learning strategies for 3D speech enhancement and 3D sound localization and detection in office-like environments. This challenge improves and extends the tasks of the L3DAS21 edition. We generated a new dataset, which maintains the same general characteristics of L3DAS21 datasets, but with an extended number of data points and adding constrains that improve the baseline model's efficiency and overcome the major difficulties encountered by the participants of the previous challenge. We updated the baseline model of Task 1, using the architecture that ranked first in the previous challenge edition. We wrote a new supporting API, improving its clarity and ease-of-use. In the end, we present and discuss the results submitted by all participants. L3DAS22 Challenge website: www.l3das.com/icassp2022.


Continual Learning with Invertible Generative Models

arXiv.org Machine Learning

Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endless sources of data. In this paper, we propose a novel method that combines the strengths of regularization and generative-based rehearsal approaches. Our generative model consists of a normalizing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the network. By keeping a single NF throughout the training process, we show that our memory overhead remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to regularize the network's embeddings with respect to past tasks. We show that our method performs favorably with espect to state-of-the-art approaches in the literature, with bounded computational power and memory overheads.


Pixle: a fast and effective black-box attack based on rearranging pixels

arXiv.org Machine Learning

Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training procedure, and we propose a novel attack that is capable of correctly attacking a high percentage of samples by rearranging a small number of pixels within the attacked image. We demonstrate that our attack works on a large number of datasets and models, that it requires a small number of iterations, and that the distance between the original sample and the adversarial one is negligible to the human eye.