Umut Güçlü
Reconstructing perceived faces from brain activations with deep adversarial neural decoding
Yağmur Güçlütürk, Umut Güçlü, Katja Seeliger, Sander Bosch, Rob van Lier, Marcel A. J. van Gerven
Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation and then inverts the nonlinear transformation from perceived stimuli to latent features with adversarial training of convolutional neural networks. We test our approach with a functional magnetic resonance imaging experiment and show that it can generate state-of-the-art reconstructions of perceived faces from brain activations.
Brains on Beats
Umut Güçlü, Jordy Thielen, Michael Hanke, Marcel van Gerven, Marcel A. J. van Gerven
We developed task-optimized deep neural networks (DNNs) that achieved state-ofthe-art performance in different evaluation scenarios for automatic music tagging. These DNNs were subsequently used to probe the neural representations of music. Representational similarity analysis revealed the existence of a representational gradient across the superior temporal gyrus (STG). Anterior STG was shown to be more sensitive to low-level stimulus features encoded in shallow DNN layers whereas posterior STG was shown to be more sensitive to high-level stimulus features encoded in deep DNN layers.