Udeshi, Meet
D-CIPHER: Dynamic Collaborative Intelligent Agents with Planning and Heterogeneous Execution for Enhanced Reasoning in Offensive Security
Udeshi, Meet, Shao, Minghao, Xi, Haoran, Rani, Nanda, Milner, Kimberly, Putrevu, Venkata Sai Charan, Dolan-Gavitt, Brendan, Shukla, Sandeep Kumar, Krishnamurthy, Prashanth, Khorrami, Farshad, Karri, Ramesh, Shafique, Muhammad
Large Language Models (LLMs) have been used in cybersecurity in many ways, including their recent use as intelligent agent systems for autonomous security analysis. Capture the Flag (CTF) challenges serve as benchmarks for assessing the automated task-planning abilities of LLM agents across various cybersecurity skill sets. Early attempts to apply LLMs for solving CTF challenges relied on single-agent systems, where feedback was restricted to a single reasoning-action loop. This approach proved inadequate for handling complex CTF tasks. Drawing inspiration from real-world CTF competitions, where teams of experts collaborate, we introduce the D-CIPHER multi-agent LLM framework for collaborative CTF challenge solving. D-CIPHER integrates agents with distinct roles, enabling dynamic feedback loops to enhance reasoning on CTF challenges. It introduces the Planner-Executor agent system, consisting of a Planner agent for overall problem-solving along with multiple heterogeneous Executor agents for individual tasks, facilitating efficient allocation of responsibilities among the LLMs. Additionally, D-CIPHER incorporates an Auto-prompter agent, which improves problem-solving by exploring the challenge environment and generating a highly relevant initial prompt. We evaluate D-CIPHER on CTF benchmarks using multiple LLM models and conduct comprehensive studies to highlight the impact of our enhancements. Our results demonstrate that the multi-agent D-CIPHER system achieves a significant improvement in challenges solved, setting a state-of-the-art performance on three benchmarks: 22.0% on NYU CTF Bench, 22.5% on Cybench, and 44.0% on HackTheBox. D-CIPHER is available at https://github.com/NYU-LLM-CTF/nyuctf_agents as the nyuctf_multiagent package.
EnIGMA: Enhanced Interactive Generative Model Agent for CTF Challenges
Abramovich, Talor, Udeshi, Meet, Shao, Minghao, Lieret, Kilian, Xi, Haoran, Milner, Kimberly, Jancheska, Sofija, Yang, John, Jimenez, Carlos E., Khorrami, Farshad, Krishnamurthy, Prashanth, Dolan-Gavitt, Brendan, Shafique, Muhammad, Narasimhan, Karthik, Karri, Ramesh, Press, Ofir
Although language model (LM) agents are demonstrating growing potential in many domains, their success in cybersecurity has been limited due to simplistic design and the lack of fundamental features for this domain. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. EnIGMA introduces new Agent-Computer Interfaces (ACIs) to improve the success rate on CTF challenges. We establish the novel Interactive Agent Tool concept, which enables LM agents to run interactive command-line utilities essential for these challenges. Empirical analysis of EnIGMA on over 350 CTF challenges from three different benchmarks indicates that providing a robust set of new tools with demonstration of their usage helps the LM solve complex problems and achieves state-of-the-art results on the NYU CTF and Intercode-CTF benchmarks. Finally, we discuss insights on ACI design and agent behavior on cybersecurity tasks that highlight the need to adapt real-world tools for LM agents.
NYU CTF Dataset: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security
Shao, Minghao, Jancheska, Sofija, Udeshi, Meet, Dolan-Gavitt, Brendan, Xi, Haoran, Milner, Kimberly, Chen, Boyuan, Yin, Max, Garg, Siddharth, Krishnamurthy, Prashanth, Khorrami, Farshad, Karri, Ramesh, Shafique, Muhammad
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized dataset, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our dataset open source to public https://github.com/NYU-LLM-CTF/LLM_CTF_Database along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.