Goto

Collaborating Authors

 Tzamos, Christos


Statistical Query Hardness of Multiclass Linear Classification with Random Classification Noise

arXiv.org Machine Learning

We study the task of Multiclass Linear Classification (MLC) in the distribution-free PAC model with Random Classification Noise (RCN). Specifically, the learner is given a set of labeled examples $(x, y)$, where $x$ is drawn from an unknown distribution on $R^d$ and the labels are generated by a multiclass linear classifier corrupted with RCN. That is, the label $y$ is flipped from $i$ to $j$ with probability $H_{ij}$ according to a known noise matrix $H$ with non-negative separation $\sigma: = \min_{i \neq j} H_{ii}-H_{ij}$. The goal is to compute a hypothesis with small 0-1 error. For the special case of two labels, prior work has given polynomial-time algorithms achieving the optimal error. Surprisingly, little is known about the complexity of this task even for three labels. As our main contribution, we show that the complexity of MLC with RCN becomes drastically different in the presence of three or more labels. Specifically, we prove super-polynomial Statistical Query (SQ) lower bounds for this problem. In more detail, even for three labels and constant separation, we give a super-polynomial lower bound on the complexity of any SQ algorithm achieving optimal error. For a larger number of labels and smaller separation, we show a super-polynomial SQ lower bound even for the weaker goal of achieving any constant factor approximation to the optimal loss or even beating the trivial hypothesis.


Optimization Can Learn Johnson Lindenstrauss Embeddings

arXiv.org Machine Learning

Embeddings play a pivotal role across various disciplines, offering compact representations of complex data structures. Randomized methods like Johnson-Lindenstrauss (JL) provide state-of-the-art and essentially unimprovable theoretical guarantees for achieving such representations. These guarantees are worst-case and in particular, neither the analysis, nor the algorithm, takes into account any potential structural information of the data. The natural question is: must we randomize? Could we instead use an optimization-based approach, working directly with the data? A first answer is no: as we show, the distance-preserving objective of JL has a non-convex landscape over the space of projection matrices, with many bad stationary points. But this is not the final answer. We present a novel method motivated by diffusion models, that circumvents this fundamental challenge: rather than performing optimization directly over the space of projection matrices, we use optimization over the larger space of random solution samplers, gradually reducing the variance of the sampler. We show that by moving through this larger space, our objective converges to a deterministic (zero variance) solution, avoiding bad stationary points. This method can also be seen as an optimization-based derandomization approach and is an idea and method that we believe can be applied to many other problems.


Active Learning with Simple Questions

arXiv.org Artificial Intelligence

We consider an active learning setting where a learner is presented with a pool S of n unlabeled examples belonging to a domain X and asks queries to find the underlying labeling that agrees with a target concept h^* \in H. In contrast to traditional active learning that queries a single example for its label, we study more general region queries that allow the learner to pick a subset of the domain T \subset X and a target label y and ask a labeler whether h^*(x) = y for every example in the set T \cap S. Such more powerful queries allow us to bypass the limitations of traditional active learning and use significantly fewer rounds of interactions to learn but can potentially lead to a significantly more complex query language. Our main contribution is quantifying the trade-off between the number of queries and the complexity of the query language used by the learner. We measure the complexity of the region queries via the VC dimension of the family of regions. We show that given any hypothesis class H with VC dimension d, one can design a region query family Q with VC dimension O(d) such that for every set of n examples S \subset X and every h^* \in H, a learner can submit O(d log n) queries from Q to a labeler and perfectly label S. We show a matching lower bound by designing a hypothesis class H with VC dimension d and a dataset S \subset X of size n such that any learning algorithm using any query class with VC dimension less than O(d) must make poly(n) queries to label S perfectly. Finally, we focus on well-studied hypothesis classes including unions of intervals, high-dimensional boxes, and d-dimensional halfspaces, and obtain stronger results. In particular, we design learning algorithms that (i) are computationally efficient and (ii) work even when the queries are not answered based on the learner's pool of examples S but on some unknown superset L of S


Online Learning of Halfspaces with Massart Noise

arXiv.org Machine Learning

We study the task of online learning in the presence of Massart noise. Instead of assuming that the online adversary chooses an arbitrary sequence of labels, we assume that the context $\mathbf{x}$ is selected adversarially but the label $y$ presented to the learner disagrees with the ground-truth label of $\mathbf{x}$ with unknown probability at most $\eta$. We study the fundamental class of $\gamma$-margin linear classifiers and present a computationally efficient algorithm that achieves mistake bound $\eta T + o(T)$. Our mistake bound is qualitatively tight for efficient algorithms: it is known that even in the offline setting achieving classification error better than $\eta$ requires super-polynomial time in the SQ model. We extend our online learning model to a $k$-arm contextual bandit setting where the rewards -- instead of satisfying commonly used realizability assumptions -- are consistent (in expectation) with some linear ranking function with weight vector $\mathbf{w}^\ast$. Given a list of contexts $\mathbf{x}_1,\ldots \mathbf{x}_k$, if $\mathbf{w}^*\cdot \mathbf{x}_i > \mathbf{w}^* \cdot \mathbf{x}_j$, the expected reward of action $i$ must be larger than that of $j$ by at least $\Delta$. We use our Massart online learner to design an efficient bandit algorithm that obtains expected reward at least $(1-1/k)~ \Delta T - o(T)$ bigger than choosing a random action at every round.


Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods

arXiv.org Machine Learning

Deep Neural Networks and Reinforcement Learning methods have empirically shown great promise in tackling challenging combinatorial problems. In those methods a deep neural network is used as a solution generator which is then trained by gradient-based methods (e.g., policy gradient) to successively obtain better solution distributions. In this work we introduce a novel theoretical framework for analyzing the effectiveness of such methods. We ask whether there exist generative models that (i) are expressive enough to generate approximately optimal solutions; (ii) have a tractable, i.e, polynomial in the size of the input, number of parameters; (iii) their optimization landscape is benign in the sense that it does not contain sub-optimal stationary points. Our main contribution is a positive answer to this question. Our result holds for a broad class of combinatorial problems including Max- and Min-Cut, Max-$k$-CSP, Maximum-Weight-Bipartite-Matching, and the Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel regularization process over vanilla gradient descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.


Distribution-Independent Regression for Generalized Linear Models with Oblivious Corruptions

arXiv.org Machine Learning

We demonstrate the first algorithms for the problem of regression for generalized linear models (GLMs) in the presence of additive oblivious noise. We assume we have sample access to examples $(x, y)$ where $y$ is a noisy measurement of $g(w^* \cdot x)$. In particular, \new{the noisy labels are of the form} $y = g(w^* \cdot x) + \xi + \epsilon$, where $\xi$ is the oblivious noise drawn independently of $x$ \new{and satisfies} $\Pr[\xi = 0] \geq o(1)$, and $\epsilon \sim \mathcal N(0, \sigma^2)$. Our goal is to accurately recover a \new{parameter vector $w$ such that the} function $g(w \cdot x)$ \new{has} arbitrarily small error when compared to the true values $g(w^* \cdot x)$, rather than the noisy measurements $y$. We present an algorithm that tackles \new{this} problem in its most general distribution-independent setting, where the solution may not \new{even} be identifiable. \new{Our} algorithm returns \new{an accurate estimate of} the solution if it is identifiable, and otherwise returns a small list of candidates, one of which is close to the true solution. Furthermore, we \new{provide} a necessary and sufficient condition for identifiability, which holds in broad settings. \new{Specifically,} the problem is identifiable when the quantile at which $\xi + \epsilon = 0$ is known, or when the family of hypotheses does not contain candidates that are nearly equal to a translated $g(w^* \cdot x) + A$ for some real number $A$, while also having large error when compared to $g(w^* \cdot x)$. This is the first \new{algorithmic} result for GLM regression \new{with oblivious noise} which can handle more than half the samples being arbitrarily corrupted. Prior work focused largely on the setting of linear regression, and gave algorithms under restrictive assumptions.


Self-Directed Linear Classification

arXiv.org Artificial Intelligence

In online classification, a learner is presented with a sequence of examples and aims to predict their labels in an online fashion so as to minimize the total number of mistakes. In the self-directed variant, the learner knows in advance the pool of examples and can adaptively choose the order in which predictions are made. Here we study the power of choosing the prediction order and establish the first strong separation between worst-order and random-order learning for the fundamental task of linear classification. Prior to our work, such a separation was known only for very restricted concept classes, e.g., one-dimensional thresholds or axis-aligned rectangles. We present two main results. If $X$ is a dataset of $n$ points drawn uniformly at random from the $d$-dimensional unit sphere, we design an efficient self-directed learner that makes $O(d \log \log(n))$ mistakes and classifies the entire dataset. If $X$ is an arbitrary $d$-dimensional dataset of size $n$, we design an efficient self-directed learner that predicts the labels of $99\%$ of the points in $X$ with mistake bound independent of $n$. In contrast, under a worst- or random-ordering, the number of mistakes must be at least $\Omega(d \log n)$, even when the points are drawn uniformly from the unit sphere and the learner only needs to predict the labels for $1\%$ of them.


Approximating Pandora's Box with Correlations

arXiv.org Artificial Intelligence

We revisit the classic Pandora's Box (PB) problem under correlated distributions on the box values. Recent work of arXiv:1911.01632 obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover ($\text{MSSC}_f$) problem. For distributions of support $m$, UDT admits a $\log m$ approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time (arXiv:1906.11385). Our main result implies that the same properties hold for PB and $\text{MSSC}_f$. We also study the case where the distribution over values is given more succinctly as a mixture of $m$ product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time $n^{ \tilde O( m^2/\varepsilon^2 ) }$ when the mixture components on every box are either identical or separated in TV distance by $\varepsilon$.


Buying Information for Stochastic Optimization

arXiv.org Artificial Intelligence

Stochastic optimization is one of the central problems in Machine Learning and Theoretical Computer Science. In the standard model, the algorithm is given a fixed distribution known in advance. In practice though, one may acquire at a cost extra information to make better decisions. In this paper, we study how to buy information for stochastic optimization and formulate this question as an online learning problem. Assuming the learner has an oracle for the original optimization problem, we design a $2$-competitive deterministic algorithm and a $e/(e-1)$-competitive randomized algorithm for buying information. We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping. We also consider an adaptive setting where the learner can choose to buy information after taking some actions for the underlying optimization problem. We focus on the classic optimization problem, Min-Sum Set Cover, where the goal is to quickly find an action that covers a given request drawn from a known distribution. We provide an $8$-competitive algorithm running in polynomial time that chooses actions and decides when to buy information about the underlying request.


Perfect Sampling from Pairwise Comparisons

arXiv.org Artificial Intelligence

In this work, we study how to efficiently obtain perfect samples from a discrete distribution $\mathcal{D}$ given access only to pairwise comparisons of elements of its support. Specifically, we assume access to samples $(x, S)$, where $S$ is drawn from a distribution over sets $\mathcal{Q}$ (indicating the elements being compared), and $x$ is drawn from the conditional distribution $\mathcal{D}_S$ (indicating the winner of the comparison) and aim to output a clean sample $y$ distributed according to $\mathcal{D}$. We mainly focus on the case of pairwise comparisons where all sets $S$ have size 2. We design a Markov chain whose stationary distribution coincides with $\mathcal{D}$ and give an algorithm to obtain exact samples using the technique of Coupling from the Past. However, the sample complexity of this algorithm depends on the structure of the distribution $\mathcal{D}$ and can be even exponential in the support of $\mathcal{D}$ in many natural scenarios. Our main contribution is to provide an efficient exact sampling algorithm whose complexity does not depend on the structure of $\mathcal{D}$. To this end, we give a parametric Markov chain that mixes significantly faster given a good approximation to the stationary distribution. We can obtain such an approximation using an efficient learning from pairwise comparisons algorithm (Shah et al., JMLR 17, 2016). Our technique for speeding up sampling from a Markov chain whose stationary distribution is approximately known is simple, general and possibly of independent interest.