Twycross, Jamie
Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems
Twycross, Jamie, Aickelin, Uwe, Whitbrook, Amanda
Artificial Immune Systems have been successfully applied to a number of problem domains including fault tolerance and data mining, but have been shown to scale poorly when applied to computer intrusion detec- tion despite the fact that the biological immune system is a very effective anomaly detector. This may be because AIS algorithms have previously been based on the adaptive immune system and biologically-naive mod- els. This paper focuses on describing and testing a more complex and biologically-authentic AIS model, inspired by the interactions between the innate and adaptive immune systems. Its performance on a realistic process anomaly detection problem is shown to be better than standard AIS methods (negative-selection), policy-based anomaly detection methods (systrace), and an alternative innate AIS approach (the DCA). In addition, it is shown that runtime information can be used in combination with system call information to enhance detection capability.
Towards a Conceptual Framework for Innate Immunity
Twycross, Jamie, Aickelin, Uwe
Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.
Experimenting with Innate Immunity
Twycross, Jamie, Aickelin, Uwe
In a previous paper the authors argued the case for incorporating ideas from innate immunity into artificial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were highlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.
Malicious Code Execution Detection and Response Immune System inspired by the Danger Theory
Kim, Jungwon, Greensmith, Julie, Twycross, Jamie, Aickelin, Uwe
The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.
Biological Inspiration for Artificial Immune Systems
Twycross, Jamie, Aickelin, Uwe
Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary research that more biologically-realistic AISs could have is also discussed.
libtissue - implementing innate immunity
Twycross, Jamie, Aickelin, Uwe
In a previous paper the authors argued the case for incorporating ideas from innate immunity into articficial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were hughlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.
Information Fusion in the Immune System
Twycross, Jamie, Aickelin, Uwe
Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial Immune Systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has show how AISs which use multi-level information sources as input data can be used to build effective algorithms for real time computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs
Integrating Innate and Adaptive Immunity for Intrusion Detection
Tedesco, Gianni, Twycross, Jamie, Aickelin, Uwe
Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Detecting Danger: Applying a Novel Immunological Concept to Intrusion Detection Systems
Greensmith, Julie, Aickelin, Uwe, Twycross, Jamie
In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, anti-virus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Dendritic Cells for Anomaly Detection
Greensmith, Julie, Twycross, Jamie, Aickelin, Uwe
Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.