Goto

Collaborating Authors

 Tursun, Osman


TUMLU: A Unified and Native Language Understanding Benchmark for Turkic Languages

arXiv.org Artificial Intelligence

Being able to thoroughly assess massive multi-task language understanding (MMLU) capabilities is essential for advancing the applicability of multilingual language models. However, preparing such benchmarks in high quality native language is often costly and therefore limits the representativeness of evaluation datasets. While recent efforts focused on building more inclusive MMLU benchmarks, these are conventionally built using machine translation from high-resource languages, which may introduce errors and fail to account for the linguistic and cultural intricacies of the target languages. In this paper, we address the lack of native language MMLU benchmark especially in the under-represented Turkic language family with distinct morphosyntactic and cultural characteristics. We propose two benchmarks for Turkic language MMLU: TUMLU is a comprehensive, multilingual, and natively developed language understanding benchmark specifically designed for Turkic languages. It consists of middle- and high-school level questions spanning 11 academic subjects in Azerbaijani, Crimean Tatar, Karakalpak, Kazakh, Tatar, Turkish, Uyghur, and Uzbek. We also present TUMLU-mini, a more concise, balanced, and manually verified subset of the dataset. Using this dataset, we systematically evaluate a diverse range of open and proprietary multilingual large language models (LLMs), including Claude, Gemini, GPT, and LLaMA, offering an in-depth analysis of their performance across different languages, subjects, and alphabets. To promote further research and development in multilingual language understanding, we release TUMLU-mini and all corresponding evaluation scripts.


Part-based Quantitative Analysis for Heatmaps

arXiv.org Artificial Intelligence

Heatmaps have been instrumental in helping understand deep network decisions, and are a common approach for Explainable AI (XAI). While significant progress has been made in enhancing the informativeness and accessibility of heatmaps, heatmap analysis is typically very subjective and limited to domain experts. As such, developing automatic, scalable, and numerical analysis methods to make heatmap-based XAI more objective, end-user friendly, and cost-effective is vital. In addition, there is a need for comprehensive evaluation metrics to assess heatmap quality at a granular level.


Towards Self-Explainability of Deep Neural Networks with Heatmap Captioning and Large-Language Models

arXiv.org Artificial Intelligence

Heatmaps are widely used to interpret deep neural networks, particularly for computer vision tasks, and the heatmap-based explainable AI (XAI) techniques are a well-researched topic. However, most studies concentrate on enhancing the quality of the generated heatmap or discovering alternate heatmap generation techniques, and little effort has been devoted to making heatmap-based XAI automatic, interactive, scalable, and accessible. To address this gap, we propose a framework that includes two modules: (1) context modelling and (2) reasoning. We proposed a template-based image captioning approach for context modelling to create text-based contextual information from the heatmap and input data. The reasoning module leverages a large language model to provide explanations in combination with specialised knowledge. Our qualitative experiments demonstrate the effectiveness of our framework and heatmap captioning approach. The code for the proposed template-based heatmap captioning approach will be publicly available.