Turner, Richard
Influence Functions for Scalable Data Attribution in Diffusion Models
Mlodozeniec, Bruno, Eschenhagen, Runa, Bae, Juhan, Immer, Alexander, Krueger, David, Turner, Richard
Diffusion models have led to significant advancements in generative modelling. Yet their widespread adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help address such challenges in diffusion models by developing an influence functions framework. Influence function-based data attribution methods approximate how a model's output would have changed if some training data were removed. In supervised learning, this is usually used for predicting how the loss on a particular example would change. For diffusion models, we focus on predicting the change in the probability of generating a particular example via several proxy measurements. We show how to formulate influence functions for such quantities and how previously proposed methods can be interpreted as particular design choices in our framework. To ensure scalability of the Hessian computations in influence functions, we systematically develop K-FAC approximations based on generalised Gauss-Newton matrices specifically tailored to diffusion models. We recast previously proposed methods as specific design choices in our framework and show that our recommended method outperforms previous data attribution approaches on common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top influences, without the need for method-specific hyperparameter tuning.
Efficient Gaussian Neural Processes for Regression
Markou, Stratis, Requeima, James, Bruinsma, Wessel, Turner, Richard
Conditional Neural Processes (CNP; Garnelo et al., 2018) are an attractive family of meta-learning models which produce well-calibrated predictions, enable fast inference at test time, and are trainable via a simple maximum likelihood procedure. A limitation of CNPs is their inability to model dependencies in the outputs. This significantly hurts predictive performance and renders it impossible to draw coherent function samples, which limits the applicability of CNPs in down-stream applications and decision making. NeuralProcesses (NPs; Garnelo et al., 2018) attempt to alleviate this issue by using latent variables, rely-ing on these to model output dependencies, but introduces difficulties stemming from approximate inference. One recent alternative (Bruinsma et al.,2021), which we refer to as the FullConvGNP, models dependencies in the predictions while still being trainable via exact maximum-likelihood.Unfortunately, the FullConvGNP relies on expensive 2D-dimensional convolutions, which limit its applicability to only one-dimensional data.In this work, we present an alternative way to model output dependencies which also lends it-self maximum likelihood training but, unlike the FullConvGNP, can be scaled to two- and three-dimensional data. The proposed models exhibit good performance in synthetic experiments
Bayesian Neural Network Priors Revisited
Fortuin, Vincent, Garriga-Alonso, Adrià, Wenzel, Florian, Rätsch, Gunnar, Turner, Richard, van der Wilk, Mark, Aitchison, Laurence
In a Bayesian neural network (BNN), we specify a prior p(w) over the neural network parameters, and compute the posterior distribution over parameters conditioned on training data, p(w x, y) p(y w, x)p(w)/p(y x). This procedure should give considerable advantages for reasoning about predictive uncertainty, which is especially relevant in the small-data setting. Crucially, to perform Bayesian inference, we need to choose a prior that accurately reflects our beliefs about the parameters before seeing any data (Bayes, 1763; Gelman et al., 2013). However, the most common choice of the prior for BNN weights is the simplest one: the isotropic Gaussian. Isotropic Gaussians are used across almost all fields of Bayesian deep learning, ranging from variational inference (Blundell et al., 2015; Dusenberry et al., 2020), to sampling-based inference (Zhang et al., 2019), and even to infinite networks (Lee et al., 2017; Garriga-Alonso et al., 2019). This is troubling, since isotropic Gaussian priors are almost certainly not the best choice. Indeed, despite the progress on more accurate and efficient inference procedures, in most settings, the posterior predictive of BNNs using a Gaussian prior still leads to worse predictive performance than a baseline obtained by training the network with standard stochastic gradient descent (SGD) (e.g., Zhang et al., 2019; Heek & Kalchbrenner, 2019; Wenzel et al., 2020a). However, it has been shown that the performance of BNNs can be improved by artificially reducing posterior uncertainty using "cold posteriors" (Wenzel et al., 2020a).
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
Ma, Chao, Tschiatschek, Sebastian, Hernández-Lobato, José Miguel, Turner, Richard, Zhang, Cheng
Deep generative models often perform poorly in real-world applications due to the heterogeneity of natural data sets. Heterogeneity arises from data containing different types of features (categorical, ordinal, continuous, etc.) and features of the same type having different marginal distributions. We propose an extension of variational autoencoders (VAEs) called VAEM to handle such heterogeneous data. VAEM is a deep generative model that is trained in a two stage manner such that the first stage provides a more uniform representation of the data to the second stage, thereby sidestepping the problems caused by heterogeneous data. We provide extensions of VAEM to handle partially observed data, and demonstrate its performance in data generation, missing data prediction and sequential feature selection tasks. Our results show that VAEM broadens the range of real-world applications where deep generative models can be successfully deployed.
Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model
Gong, Wenbo, Tschiatschek, Sebastian, Turner, Richard, Nowozin, Sebastian, Hernández-Lobato, José Miguel, Zhang, Cheng
In this paper we introduce the ice-start problem, i.e., the challenge of deploying machine learning models when only little or no training data is initially available, and acquiring each feature element of data is associated with costs. This setting is representative for the real-world machine learning applications. For instance, in the health-care domain, when training an AI system for predicting patient metrics from lab tests, obtaining every single measurement comes with a high cost. Active learning, where only the label is associated with a cost does not apply to such problem, because performing all possible lab tests to acquire a new training datum would be costly, as well as unnecessary due to redundancy. We propose Icebreaker, a principled framework to approach the ice-start problem. Icebreaker uses a full Bayesian Deep Latent Gaussian Model (BELGAM) with a novel inference method. Our proposed method combines recent advances in amortized inference and stochastic gradient MCMC to enable fast and accurate posterior inference. By utilizing BELGAM's ability to fully quantify model uncertainty, we also propose two information acquisition functions for imputation and active prediction problems. We demonstrate that BELGAM performs significantly better than the previous VAE (Variational autoencoder) based models, when the data set size is small, using both machine learning benchmarks and real-world recommender systems and health-care applications. Moreover, based on BELGAM, Icebreaker further improves the performance and demonstrate the ability to use minimum amount of the training data to obtain the highest test time performance.
Overpruning in Variational Bayesian Neural Networks
Trippe, Brian, Turner, Richard
The motivations for using variational inference (VI) in neural networks differ significantly from those in latent variable models. This has a counter-intuitive consequence; more expressive variational approximations can provide significantly worse predictions as compared to those with less expressive families. In this work we make two contributions. First, we identify a cause of this performance gap, variational over-pruning. Second, we introduce a theoretically grounded explanation for this phenomenon. Our perspective sheds light on several related published results and provides intuition into the design of effective variational approximations of neural networks.
Magnetic Hamiltonian Monte Carlo
Tripuraneni, Nilesh, Rowland, Mark, Ghahramani, Zoubin, Turner, Richard
Hamiltonian Monte Carlo (HMC) exploits Hamiltonian dynamics to construct efficient proposals for Markov chain Monte Carlo (MCMC). In this paper, we present a generalization of HMC which exploits \textit{non-canonical} Hamiltonian dynamics. We refer to this algorithm as magnetic HMC, since in 3 dimensions a subset of the dynamics map onto the mechanics of a charged particle coupled to a magnetic field. We establish a theoretical basis for the use of non-canonical Hamiltonian dynamics in MCMC, and construct a symplectic, leapfrog-like integrator allowing for the implementation of magnetic HMC. Finally, we exhibit several examples where these non-canonical dynamics can lead to improved mixing of magnetic HMC relative to ordinary HMC.
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Gal, Yarin, Turner, Richard
Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random variable. The random covariance function has a posterior, on which a variational distribution is placed. The variational distribution transforms the random covariance function to fit the data. We study the properties of our approximate inference, compare it to alternative ones, and extend it to the distributed and stochastic domains. Our approximation captures complex functions better than standard approaches and avoids over-fitting.
Probabilistic amplitude and frequency demodulation
Turner, Richard, Sahani, Maneesh
A number of recent scientific and engineering problems require signals to be decomposed into a product of a slowly varying positive envelope and a quickly varying carrier whose instantaneous frequency also varies slowly over time. Although signal processing provides algorithms for so-called amplitude- and frequency-demodulation (AFD), there are well known problems with all of the existing methods. Motivated by the fact that AFD is ill-posed, we approach the problem using probabilistic inference. The new approach, called probabilistic amplitude and frequency demodulation (PAFD), models instantaneous frequency using an auto-regressive generalization of the von Mises distribution, and the envelopes using Gaussian auto-regressive dynamics with a positivity constraint. A novel form of expectation propagation is used for inference. We demonstrate that although PAFD is computationally demanding, it outperforms previous approaches on synthetic and real signals in clean, noisy and missing data settings.
Occlusive Components Analysis
Lücke, Jörg, Turner, Richard, Sahani, Maneesh, Henniges, Marc
We study unsupervised learning in a probabilistic generative model for occlusion. The model uses two types of latent variables: one indicates which objects are present in the image, and the other how they are ordered in depth. This depth order then determines how the positions and appearances of the objects present, specified in the model parameters, combine to form the image. We show that the object parameters can be learnt from an unlabelled set of images in which objects occlude one another. Exact maximum-likelihood learning is intractable. However, we show that tractable approximations to Expectation Maximization (EM) can be found if the training images each contain only a small number of objects on average. In numerical experiments it is shown that these approximations recover the correct set of object parameters. Experiments on a novel version of the bars test using colored bars, and experiments on more realistic data, show that the algorithm performs well in extracting the generating causes. Experiments based on the standard bars benchmark test for object learning show that the algorithm performs well in comparison to other recent component extraction approaches. The model and the learning algorithm thus connect research on occlusion with the research field of multiple-cause component extraction methods.