Turek, Javier
Position: Episodic Memory is the Missing Piece for Long-Term LLM Agents
Pink, Mathis, Wu, Qinyuan, Vo, Vy Ai, Turek, Javier, Mu, Jianing, Huth, Alexander, Toneva, Mariya
As Large Language Models (LLMs) evolve from text-completion tools into fully fledged agents operating in dynamic environments, they must address the challenge of continually learning and retaining long-term knowledge. Many biological systems solve these challenges with episodic memory, which supports single-shot learning of instance-specific contexts. Inspired by this, we present an episodic memory framework for LLM agents, centered around five key properties of episodic memory that underlie adaptive and context-sensitive behavior. With various research efforts already partially covering these properties, this position paper argues that now is the right time for an explicit, integrated focus on episodic memory to catalyze the development of long-term agents. To this end, we outline a roadmap that unites several research directions under the goal to support all five properties of episodic memory for more efficient long-term LLM agents.
On the Challenges of Creating Datasets for Analyzing Commercial Sex Advertisements to Assess Human Trafficking Risk and Organized Activity
Rivas, Pablo, Cerny, Tomas, Perez, Alejandro Rodriguez, Turek, Javier, Giddens, Laurie, Bichler, Gisela, Petter, Stacie
Our study addresses the challenges of building datasets to understand the risks associated with organized activities and human trafficking through commercial sex advertisements. These challenges include data scarcity, rapid obsolescence, and privacy concerns. Traditional approaches, which are not automated and are difficult to reproduce, fall short in addressing these issues. We have developed a reproducible and automated methodology to analyze five million advertisements. In the process, we identified further challenges in dataset creation within this sensitive domain. This paper presents a streamlined methodology to assist researchers Figure 1: Methodology to generate a pseudo-labeled in constructing effective datasets for combating dataset in human trafficking risk prediction and organized organized crime, allowing them to focus on activity detection tasks.
Humans and language models diverge when predicting repeating text
Vaidya, Aditya R., Turek, Javier, Huth, Alexander G.
Language models that are trained on the next-word prediction task have been shown to accurately model human behavior in word prediction and reading speed. In contrast with these findings, we present a scenario in which the performance of humans and LMs diverges. We collected a dataset of human next-word predictions for five stimuli that are formed by repeating spans of text. Human and GPT-2 LM predictions are strongly aligned in the first presentation of a text span, but their performance quickly diverges when memory (or in-context learning) begins to play a role. We traced the cause of this divergence to specific attention heads in a middle layer. Adding a power-law recency bias to these attention heads yielded a model that performs much more similarly to humans. We hope that this scenario will spur future work in bringing LMs closer to human behavior.
Large Language Models Based Automatic Synthesis of Software Specifications
Mandal, Shantanu, Chethan, Adhrik, Janfaza, Vahid, Mahmud, S M Farabi, Anderson, Todd A, Turek, Javier, Tithi, Jesmin Jahan, Muzahid, Abdullah
Software configurations play a crucial role in determining the behavior of software systems. In order to ensure safe and error-free operation, it is necessary to identify the correct configuration, along with their valid bounds and rules, which are commonly referred to as software specifications. As software systems grow in complexity and scale, the number of configurations and associated specifications required to ensure the correct operation can become large and prohibitively difficult to manipulate manually. Due to the fast pace of software development, it is often the case that correct software specifications are not thoroughly checked or validated within the software itself. Rather, they are frequently discussed and documented in a variety of external sources, including software manuals, code comments, and online discussion forums. Therefore, it is hard for the system administrator to know the correct specifications of configurations due to the lack of clarity, organization, and a centralized unified source to look at. To address this challenge, we propose SpecSyn a framework that leverages a state-of-the-art large language model to automatically synthesize software specifications from natural language sources. Our approach formulates software specification synthesis as a sequence-to-sequence learning problem and investigates the extraction of specifications from large contextual texts. This is the first work that uses a large language model for end-to-end specification synthesis from natural language texts. Empirical results demonstrate that our system outperforms prior the state-of-the-art specification synthesis tool by 21% in terms of F1 score and can find specifications from single as well as multiple sentences.
Synthesizing Programs with Continuous Optimization
Mandal, Shantanu, Anderson, Todd A., Turek, Javier, Gottschlich, Justin, Muzahid, Abdullah
Automatic software generation based on some specification is known as program synthesis. Most existing approaches formulate program synthesis as a search problem with discrete parameters. In this paper, we present a novel formulation of program synthesis as a continuous optimization problem and use a state-of-the-art evolutionary approach, known as Covariance Matrix Adaptation Evolution Strategy to solve the problem. We then propose a mapping scheme to convert the continuous formulation into actual programs. We compare our system, called GENESYS, with several recent program synthesis techniques (in both discrete and continuous domains) and show that GENESYS synthesizes more programs within a fixed time budget than those existing schemes. For example, for programs of length 10, GENESYS synthesizes 28% more programs than those existing schemes within the same time budget.