Not enough data to create a plot.
Try a different view from the menu above.
Turaga, Pavan
Graph Network Modeling Techniques for Visualizing Human Mobility Patterns
Mitra, Sinjini, Srivastava, Anuj, Roy, Avipsa, Turaga, Pavan
Human mobility analysis at urban-scale requires models to represent the complex nature of human movements, which in turn are affected by accessibility to nearby points of interest, underlying socioeconomic factors of a place, and local transport choices for people living in a geographic region. In this work, we represent human mobility and the associated flow of movements as a grapyh. Graph-based approaches for mobility analysis are still in their early stages of adoption and are actively being researched. The challenges of graph-based mobility analysis are multifaceted - the lack of sufficiently high-quality data to represent flows at high spatial and teporal resolution whereas, limited computational resources to translate large voluments of mobility data into a network structure, and scaling issues inherent in graph models etc. The current study develops a methodology by embedding graphs into a continuous space, which alleviates issues related to fast graph matching, graph time-series modeling, and visualization of mobility dynamics. Through experiments, we demonstrate how mobility data collected from taxicab trajectories could be transformed into network structures and patterns of mobility flow changes, and can be used for downstream tasks reporting approx 40% decrease in error on average in matched graphs vs unmatched ones.
AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset
Farahmand, Ebrahim, Azghan, Reza Rahimi, Chatrudi, Nooshin Taheri, Kim, Eric, Gudur, Gautham Krishna, Thomaz, Edison, Pedrielli, Giulia, Turaga, Pavan, Ghasemzadeh, Hassan
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.
Role of Mixup in Topological Persistence Based Knowledge Distillation for Wearable Sensor Data
Jeon, Eun Som, Choi, Hongjun, Buman, Matthew P., Turaga, Pavan
The analysis of wearable sensor data has enabled many successes in several applications. To represent the high-sampling rate time-series with sufficient detail, the use of topological data analysis (TDA) has been considered, and it is found that TDA can complement other time-series features. Nonetheless, due to the large time consumption and high computational resource requirements of extracting topological features through TDA, it is difficult to deploy topological knowledge in various applications. To tackle this problem, knowledge distillation (KD) can be adopted, which is a technique facilitating model compression and transfer learning to generate a smaller model by transferring knowledge from a larger network. By leveraging multiple teachers in KD, both time-series and topological features can be transferred, and finally, a superior student using only time-series data is distilled. On the other hand, mixup has been popularly used as a robust data augmentation technique to enhance model performance during training. Mixup and KD employ similar learning strategies. In KD, the student model learns from the smoothed distribution generated by the teacher model, while mixup creates smoothed labels by blending two labels. Hence, this common smoothness serves as the connecting link that establishes a connection between these two methods. In this paper, we analyze the role of mixup in KD with time-series as well as topological persistence, employing multiple teachers. We present a comprehensive analysis of various methods in KD and mixup on wearable sensor data.
Topological Persistence Guided Knowledge Distillation for Wearable Sensor Data
Jeon, Eun Som, Choi, Hongjun, Shukla, Ankita, Wang, Yuan, Lee, Hyunglae, Buman, Matthew P., Turaga, Pavan
Deep learning methods have achieved a lot of success in various applications involving converting wearable sensor data to actionable health insights. A common application areas is activity recognition, where deep-learning methods still suffer from limitations such as sensitivity to signal quality, sensor characteristic variations, and variability between subjects. To mitigate these issues, robust features obtained by topological data analysis (TDA) have been suggested as a potential solution. However, there are two significant obstacles to using topological features in deep learning: (1) large computational load to extract topological features using TDA, and (2) different signal representations obtained from deep learning and TDA which makes fusion difficult. In this paper, to enable integration of the strengths of topological methods in deep-learning for time-series data, we propose to use two teacher networks, one trained on the raw time-series data, and another trained on persistence images generated by TDA methods. The distilled student model utilizes only the raw time-series data at test-time. This approach addresses both issues. The use of KD with multiple teachers utilizes complementary information, and results in a compact model with strong supervisory features and an integrated richer representation. To assimilate desirable information from different modalities, we design new constraints, including orthogonality imposed on feature correlation maps for improving feature expressiveness and allowing the student to easily learn from the teacher. Also, we apply an annealing strategy in KD for fast saturation and better accommodation from different features, while the knowledge gap between the teachers and student is reduced. Finally, a robust student model is distilled, which uses only the time-series data as an input, while implicitly preserving topological features.
Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks
Hong, Jinyung, Jeon, Eun Som, Kim, Changhoon, Park, Keun Hee, Nath, Utkarsh, Yang, Yezhou, Turaga, Pavan, Pavlic, Theodore P.
Biased attributes, spuriously correlated with target labels in a dataset, can problematically lead to neural networks that learn improper shortcuts for classifications and limit their capabilities for out-of-distribution (OOD) generalization. Although many debiasing approaches have been proposed to ensure correct predictions from biased datasets, few studies have considered learning latent embedding consisting of intrinsic and biased attributes that contribute to improved performance and explain how the model pays attention to attributes. In this paper, we propose a novel debiasing framework, Debiasing Global Workspace, introducing attention-based information bottlenecks for learning compositional representations of attributes without defining specific bias types. Based on our observation that learning shape-centric representation helps robust performance on OOD datasets, we adopt those abilities to learn robust and generalizable representations of decomposable latent embeddings corresponding to intrinsic and biasing attributes. We conduct comprehensive evaluations on biased datasets, along with both quantitative and qualitative analyses, to showcase our approach's efficacy in attribute-centric representation learning and its ability to differentiate between intrinsic and bias-related features.
Target-Aware Generative Augmentations for Single-Shot Adaptation
Thopalli, Kowshik, Subramanyam, Rakshith, Turaga, Pavan, Thiagarajan, Jayaraman J.
In this paper, we address the problem of adapting models from a source domain to a target domain, a task that has become increasingly important due to the brittle generalization of deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic toolbox data augmentations in cases of limited target data availability. We consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA, which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments on a variety of benchmarks, distribution shifts and image corruptions, we find that SiSTA produces significantly improved generalization over existing baselines in face attribute detection and multi-class object recognition. Furthermore, SiSTA performs competitively to models obtained by training on larger target datasets. Our codes can be accessed at https://github.com/Rakshith-2905/SiSTA.
Learning Pose Image Manifolds Using Geometry-Preserving GANs and Elasticae
Liang, Shenyuan, Turaga, Pavan, Srivastava, Anuj
This paper investigates the challenge of learning image manifolds, specifically pose manifolds, of 3D objects using limited training data. It proposes a DNN approach to manifold learning and for predicting images of objects for novel, continuous 3D rotations. The approach uses two distinct concepts: (1) Geometric Style-GAN (Geom-SGAN), which maps images to low-dimensional latent representations and maintains the (first-order) manifold geometry. That is, it seeks to preserve the pairwise distances between base points and their tangent spaces, and (2) uses Euler's elastica to smoothly interpolate between directed points (points + tangent directions) in the low-dimensional latent space. When mapped back to the larger image space, the resulting interpolations resemble videos of rotating objects. Extensive experiments establish the superiority of this framework in learning paths on rotation manifolds, both visually and quantitatively, relative to state-of-the-art GANs and VAEs.
Single-Shot Domain Adaptation via Target-Aware Generative Augmentation
Subramanyam, Rakshith, Thopalli, Kowshik, Berman, Spring, Turaga, Pavan, Thiagarajan, Jayaraman J.
The problem of adapting models from a source domain using data from any target domain of interest has gained prominence, thanks to the brittle generalization in deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic data augmentations in cases of limited target data availability. In this paper, we consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments with a state-of-the-art domain adaptation method, we find that SiSTA produces improvements as high as 20\% over existing baselines under challenging shifts in face attribute detection, and that it performs competitively to oracle models obtained by training on a larger target dataset.
Towards Conditional Generation of Minimal Action Potential Pathways for Molecular Dynamics
Cava, John Kevin, Vant, John, Ho, Nicholas, Shukla, Ankita, Turaga, Pavan, Maciejewski, Ross, Singharoy, Abhishek
In this paper, we utilized generative models, and reformulate it for problems in molecular dynamics (MD) simulation, by introducing an MD potential energy component to our generative model. By incorporating potential energy as calculated from TorchMD into a conditional generative framework, we attempt to construct a low-potential energy route of transformation between the helix~$\rightarrow$~coil structures of a protein. We show how to add an additional loss function to conditional generative models, motivated by potential energy of molecular configurations, and also present an optimization technique for such an augmented loss function. Our results show the benefit of this additional loss term on synthesizing realistic molecular trajectories.
Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns
Som, Anirudh, Krishnamurthi, Narayanan, Buman, Matthew, Turaga, Pavan
Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.