Plotting

 Tuomas Sandholm


Sample Complexity of Automated Mechanism Design

Neural Information Processing Systems

The design of revenue-maximizing combinatorial auctions, i.e. multi-item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders' valuations are drawn from an underlying distribution and that the auction designer has perfect knowledge of this distribution. Despite this strong and oftentimes unrealistic assumption, it is remarkable that the revenue-maximizing combinatorial auction remains unknown. In recent years, automated mechanism design has emerged as one of the most practical and promising approaches to designing high-revenue combinatorial auctions. The most scalable automated mechanism design algorithms take as input samples from the bidders' valuation distribution and then search for a high-revenue auction in a rich auction class. In this work, we provide the first sample complexity analysis for the standard hierarchy of deterministic combinatorial auction classes used in automated mechanism design. In particular, we provide tight sample complexity bounds on the number of samples needed to guarantee that the empirical revenue of the designed mechanism on the samples is close to its expected revenue on the underlying, unknown distribution over bidder valuations, for each of the auction classes in the hierarchy. In addition to helping set automated mechanism design on firm foundations, our results also push the boundaries of learning theory. In particular, the hypothesis functions used in our contexts are defined through multi-stage combinatorial optimization procedures, rather than simple decision boundaries, as are common in machine learning.


Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks

Neural Information Processing Systems

While Nash equilibrium in extensive-form games is well understood, very little is known about the properties of extensive-form correlated equilibrium (EFCE), both from a behavioral and from a computational point of view. In this setting, the strategic behavior of players is complemented by an external device that privately recommends moves to agents as the game progresses; players are free to deviate at any time, but will then not receive future recommendations.


Safe and Nested Subgame Solving for Imperfect-Information Games

Neural Information Processing Systems

In imperfect-information games, the optimal strategy in a subgame may depend on the strategy in other, unreached subgames. Thus a subgame cannot be solved in isolation and must instead consider the strategy for the entire game as a whole, unlike perfect-information games. Nevertheless, it is possible to first approximate a solution for the whole game and then improve it in individual subgames. This is referred to as subgame solving. We introduce subgame-solving techniques that outperform prior methods both in theory and practice. We also show how to adapt them, and past subgame-solving techniques, to respond to opponent actions that are outside the original action abstraction; this significantly outperforms the prior state-of-the-art approach, action translation. Finally, we show that subgame solving can be repeated as the game progresses down the game tree, leading to far lower exploitability. These techniques were a key component of Libratus, the first AI to defeat top humans in heads-up no-limit Texas hold'em poker.


Practical exact algorithm for trembling-hand equilibrium refinements in games

Neural Information Processing Systems

Nash equilibrium strategies have the known weakness that they do not prescribe rational play in situations that are reached with zero probability according to the strategies themselves, for example, if players have made mistakes.


Solving Large Sequential Games with the Excessive Gap Technique

Neural Information Processing Systems

There has been tremendous recent progress on equilibrium-finding algorithms for zero-sum imperfect-information extensive-form games, but there has been a puzzling gap between theory and practice. First-order methods have significantly better theoretical convergence rates than any counterfactual-regret minimization (CFR) variant. Despite this, CFR variants have been favored in practice. Experiments with first-order methods have only been conducted on small-and medium-sized games because those methods are complicated to implement in this setting, and because CFR variants have been enhanced extensively for over a decade they perform well in practice. In this paper we show that a particular first-order method, a state-ofthe-art variant of the excessive gap technique--instantiated with the dilated entropy distance function--can efficiently solve large real-world problems competitively with CFR and its variants. We show this on large endgames encountered by the Libratus poker AI, which recently beat top human poker specialist professionals at no-limit Texas hold'em. We show experimental results on our variant of the excessive gap technique as well as a prior version. We introduce a numerically friendly implementation of the smoothed best response computation associated with first-order methods for extensive-form game solving.




Depth-Limited Solving for Imperfect-Information Games

Neural Information Processing Systems

A fundamental challenge in imperfect-information games is that states do not have well-defined values. As a result, depth-limited search algorithms used in singleagent settings and perfect-information games do not apply. This paper introduces a principled way to conduct depth-limited solving in imperfect-information games by allowing the opponent to choose among a number of strategies for the remainder of the game at the depth limit.


Practical exact algorithm for trembling-hand equilibrium refinements in games

Neural Information Processing Systems

Nash equilibrium strategies have the known weakness that they do not prescribe rational play in situations that are reached with zero probability according to the strategies themselves, for example, if players have made mistakes.


Solving Large Sequential Games with the Excessive Gap Technique

Neural Information Processing Systems

There has been tremendous recent progress on equilibrium-finding algorithms for zero-sum imperfect-information extensive-form games, but there has been a puzzling gap between theory and practice. First-order methods have significantly better theoretical convergence rates than any counterfactual-regret minimization (CFR) variant. Despite this, CFR variants have been favored in practice. Experiments with first-order methods have only been conducted on small-and medium-sized games because those methods are complicated to implement in this setting, and because CFR variants have been enhanced extensively for over a decade they perform well in practice. In this paper we show that a particular first-order method, a state-ofthe-art variant of the excessive gap technique--instantiated with the dilated entropy distance function--can efficiently solve large real-world problems competitively with CFR and its variants. We show this on large endgames encountered by the Libratus poker AI, which recently beat top human poker specialist professionals at no-limit Texas hold'em. We show experimental results on our variant of the excessive gap technique as well as a prior version. We introduce a numerically friendly implementation of the smoothed best response computation associated with first-order methods for extensive-form game solving.