Tuomas Sandholm
Solving Large Sequential Games with the Excessive Gap Technique
Christian Kroer, Gabriele Farina, Tuomas Sandholm
There has been tremendous recent progress on equilibrium-finding algorithms for zero-sum imperfect-information extensive-form games, but there has been a puzzling gap between theory and practice. First-order methods have significantly better theoretical convergence rates than any counterfactual-regret minimization (CFR) variant. Despite this, CFR variants have been favored in practice. Experiments with first-order methods have only been conducted on small-and medium-sized games because those methods are complicated to implement in this setting, and because CFR variants have been enhanced extensively for over a decade they perform well in practice. In this paper we show that a particular first-order method, a state-ofthe-art variant of the excessive gap technique--instantiated with the dilated entropy distance function--can efficiently solve large real-world problems competitively with CFR and its variants. We show this on large endgames encountered by the Libratus poker AI, which recently beat top human poker specialist professionals at no-limit Texas hold'em. We show experimental results on our variant of the excessive gap technique as well as a prior version. We introduce a numerically friendly implementation of the smoothed best response computation associated with first-order methods for extensive-form game solving.
Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions
Gabriele Farina, Christian Kroer, Tuomas Sandholm
We study the performance of optimistic regret-minimization algorithms for both minimizing regret in, and computing Nash equilibria of, zero-sum extensive-form games. In order to apply these algorithms to extensive-form games, a distancegenerating function is needed. We study the use of the dilated entropy and dilated Euclidean distance functions. For the dilated Euclidean distance function we prove the first explicit bounds on the strong-convexity parameter for general treeplexes. Furthermore, we show that the use of dilated distance-generating functions enable us to decompose the mirror descent algorithm, and its optimistic variant, into local mirror descent algorithms at each information set. This decomposition mirrors the structure of the counterfactual regret minimization framework, and enables important techniques in practice, such as distributed updates and pruning of cold parts of the game tree.
Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium
Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm
Self-play methods based on regret minimization have become the state of the art for computing Nash equilibria in large two-players zero-sum extensive-form games. These methods fundamentally rely on the hierarchical structure of the players' sequential strategy spaces to construct a regret minimizer that recursively minimizes regret at each decision point in the game tree. In this paper, we introduce the first efficient regret minimization algorithm for computing extensive-form correlated equilibria in large two-player general-sum games with no chance moves. Designing such an algorithm is significantly more challenging than designing one for the Nash equilibrium counterpart, as the constraints that define the space of correlation plans lack the hierarchical structure and might even form cycles. We show that some of the constraints are redundant and can be excluded from consideration, and present an efficient algorithm that generates the space of extensive-form correlation plans incrementally from the remaining constraints. This structural decomposition is achieved via a special convexity-preserving operation that we coin scaled extension. We show that a regret minimizer can be designed for a scaled extension of any two convex sets, and that from the decomposition we then obtain a global regret minimizer. Our algorithm produces feasible iterates. Experiments show that it significantly outperforms prior approaches and for larger problems it is the only viable option.
Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks
Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm
While Nash equilibrium in extensive-form games is well understood, very little is known about the properties of extensive-form correlated equilibrium (EFCE), both from a behavioral and from a computational point of view. In this setting, the strategic behavior of players is complemented by an external device that privately recommends moves to agents as the game progresses; players are free to deviate at any time, but will then not receive future recommendations.