Plotting

 Tumer, Kagan


The 2002 AAAI Spring Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2002 Spring Symposium Series, held Monday through Wednesday, 25 to 27 March 2002, at Stanford University. The nine symposia were entitled (1) Acquiring (and Using) Linguistic (and World) Knowledge for Information Access; (2) Artificial Intelligence and Interactive Entertainment; (3) Collaborative Learning Agents; (4) Information Refinement and Revision for Decision Making: Modeling for Diagnostics, Prognostics, and Prediction; (5) Intelligent Distributed and Embedded Systems; (6) Logic-Based Program Synthesis: State of the Art and Future Trends; (7) Mining Answers from Texts and Knowledge Bases; (8) Safe Learning Agents; and (9) Sketch Understanding.


The 2002 AAAI Spring Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2002 Spring Symposium Series, held Monday through Wednesday, 25 to 27 March 2002, at Stanford University. The nine symposia were entitled (1) Acquiring (and Using) Linguistic (and World) Knowledge for Information Access; (2) Artificial Intelligence and Interactive Entertainment; (3) Collaborative Learning Agents; (4) Information Refinement and Revision for Decision Making: Modeling for Diagnostics, Prognostics, and Prediction; (5) Intelligent Distributed and Embedded Systems; (6) Logic-Based Program Synthesis: State of the Art and Future Trends; (7) Mining Answers from Texts and Knowledge Bases; (8) Safe Learning Agents; and (9) Sketch Understanding.


Using Collective Intelligence to Route Internet Traffic

Neural Information Processing Systems

A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing feature of COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior via their individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.


Using Collective Intelligence to Route Internet Traffic

Neural Information Processing Systems

A COllective INtelligence (COIN) is a set of interacting reinforcement learning(RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using thattheory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing featureof COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior viatheir individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.


Using Collective Intelligence to Route Internet Traffic

Neural Information Processing Systems

A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing feature of COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior via their individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.


Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks

Neural Information Processing Systems

The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. RBF ensemble algorithms based on such spectra provide automated, and near realtime implementation of pre-cancer detection in the hands of nonexperts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. 1 Introduction Cervical carcinoma is the second most common cancer in women worldwide, exceeded only by breast cancer (Ramanujam et al., 1996). The mortality related to cervical cancer can be reduced if this disease is detected at the precancerous state, known as squamous intraepitheliallesion (SIL). Currently, a Pap smear is used to 982 K. Turner, N. Ramanujam, R. Richards-Kortum and J. Ghosh screen for cervical cancer {Kurman et al., 1994}. In a Pap test, a large number of cells obtained by scraping the cervical epithelium are smeared onto a slide which is then fixed and stained for cytologic examination.


Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks

Neural Information Processing Systems

The mortality related to cervical cancer can be substantially reduced throughearly detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively andquantitatively probes the biochemical and morphological changes that occur in precancerous tissue. RBF ensemble algorithms based on such spectra provide automated, and near realtime implementationof pre-cancer detection in the hands of nonexperts. Theresults are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. 1 Introduction Cervical carcinoma is the second most common cancer in women worldwide, exceeded onlyby breast cancer (Ramanujam et al., 1996). The mortality related to cervical cancer can be reduced if this disease is detected at the precancerous state, known as squamous intraepitheliallesion (SIL).


Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks

Neural Information Processing Systems

The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. RBF ensemble algorithms based on such spectra provide automated, and near realtime implementation of pre-cancer detection in the hands of nonexperts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. 1 Introduction Cervical carcinoma is the second most common cancer in women worldwide, exceeded only by breast cancer (Ramanujam et al., 1996). The mortality related to cervical cancer can be reduced if this disease is detected at the precancerous state, known as squamous intraepitheliallesion (SIL). Currently, a Pap smear is used to 982 K. Turner, N. Ramanujam, R. Richards-Kortum and J. Ghosh screen for cervical cancer {Kurman et al., 1994}. In a Pap test, a large number of cells obtained by scraping the cervical epithelium are smeared onto a slide which is then fixed and stained for cytologic examination.