Tsurumine, Yoshihisa
Cooperative Grasping and Transportation using Multi-agent Reinforcement Learning with Ternary Force Representation
Bernard-Tiong, Ing-Sheng, Tsurumine, Yoshihisa, Sota, Ryosuke, Shibata, Kazuki, Matsubara, Takamitsu
Cooperative grasping and transportation require effective coordination to complete the task. This study focuses on the approach leveraging force-sensing feedback, where robots use sensors to detect forces applied by others on an object to achieve coordination. Unlike explicit communication, it avoids delays and interruptions; however, force-sensing is highly sensitive and prone to interference from variations in grasping environment, such as changes in grasping force, grasping pose, object size and geometry, which can interfere with force signals, subsequently undermining coordination. We propose multi-agent reinforcement learning (MARL) with ternary force representation, a force representation that maintains consistent representation against variations in grasping environment. The simulation and real-world experiments demonstrate the robustness of the proposed method to changes in grasping force, object size and geometry as well as inherent sim2real gap.
Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move
Kiyokawa, Takuya, Nagata, Eiki, Tsurumine, Yoshihisa, Kwon, Yuhwan, Matsubara, Takamitsu
Mobile grasping enhances manipulation efficiency by utilizing robots' mobility. This study aims to enable a commercial off-the-shelf robot for mobile grasping, requiring precise timing and pose adjustments. Self-supervised learning can develop a generalizable policy to adjust the robot's velocity and determine grasp position and orientation based on the target object's shape and pose. Due to mobile grasping's complexity, action primitivization and step-by-step learning are crucial to avoid data sparsity in learning from trial and error. This study simplifies mobile grasping into two grasp action primitives and a moving action primitive, which can be operated with limited degrees of freedom for the manipulator. This study introduces three fully convolutional neural network (FCN) models to predict static grasp primitive, dynamic grasp primitive, and residual moving velocity error from visual inputs. A two-stage grasp learning approach facilitates seamless FCN model learning. The ablation study demonstrated that the proposed method achieved the highest grasping accuracy and pick-and-place efficiency. Furthermore, randomizing object shapes and environments in the simulation effectively achieved generalizable mobile grasping.
Cyclic Policy Distillation: Sample-Efficient Sim-to-Real Reinforcement Learning with Domain Randomization
Kadokawa, Yuki, Zhu, Lingwei, Tsurumine, Yoshihisa, Matsubara, Takamitsu
Deep reinforcement learning with domain randomization learns a control policy in various simulations with randomized physical and sensor model parameters to become transferable to the real world in a zero-shot setting. However, a huge number of samples are often required to learn an effective policy when the range of randomized parameters is extensive due to the instability of policy updates. To alleviate this problem, we propose a sample-efficient method named cyclic policy distillation (CPD). CPD divides the range of randomized parameters into several small sub-domains and assigns a local policy to each one. Then local policies are learned while cyclically transitioning to sub-domains. CPD accelerates learning through knowledge transfer based on expected performance improvements. Finally, all of the learned local policies are distilled into a global policy for sim-to-real transfers. CPD's effectiveness and sample efficiency are demonstrated through simulations with four tasks (Pendulum from OpenAIGym and Pusher, Swimmer, and HalfCheetah from Mujoco), and a real-robot, ball-dispersal task. We published code and videos from our experiments at https://github.com/yuki-kadokawa/cyclic-policy-distillation.