Goto

Collaborating Authors

 Tsui-Wei Weng



Efficient Neural Network Robustness Certification with General Activation Functions

Neural Information Processing Systems

Finding minimum distortion of adversarial examples and thus certifying robustness in neural network classifiers for given data points is known to be a challenging problem. Nevertheless, recently it has been shown to be possible to give a nontrivial certified lower bound of minimum adversarial distortion, and some recent progress has been made towards this direction by exploiting the piece-wise linear nature of ReLU activations. However, a generic robustness certification for general activation functions still remains largely unexplored.