Goto

Collaborating Authors

 Tsou, Ching-Huei


Extracting Medication Changes in Clinical Narratives using Pre-trained Language Models

arXiv.org Artificial Intelligence

An accurate and detailed account of patient medications, including medication changes within the patient timeline, is essential for healthcare providers to provide appropriate patient care. Healthcare providers or the patients themselves may initiate changes to patient medication. Medication changes take many forms, including prescribed medication and associated dosage modification. These changes provide information about the overall health of the patient and the rationale that led to the current care. Future care can then build on the resulting state of the patient. This work explores the automatic extraction of medication change information from free-text clinical notes. The Contextual Medication Event Dataset (CMED) is a corpus of clinical notes with annotations that characterize medication changes through multiple change-related attributes, including the type of change (start, stop, increase, etc.), initiator of the change, temporality, change likelihood, and negation. Using CMED, we identify medication mentions in clinical text and propose three novel high-performing BERT-based systems that resolve the annotated medication change characteristics. We demonstrate that our proposed systems improve medication change classification performance over the initial work exploring CMED.


Toward Generating Domain-Specific / Personalized Problem Lists from Electronic Medical Records

AAAI Conferences

An accurate problem list plays the key role of a problem-oriented medical record, which plays a significant role in improving patient care. However, the multi-author, multi-purpose nature of problem list makes it a challenge to maintain, and a single list is difficult, if not impossible, to satisfy all the needs of different practitioners. In this paper, we propose using machine generated problem list to assist a medical practitioner to review a patient’s chart. The proposed system scans both structured and unstructured data in a patient’s electronic medical record (EMR) and generates a ranked, recall-oriented problem list grouped by body systems. Details of each problem are readily available for the user to assess the correctness and relevance of the problem. The user can then provide feedback to the system on the trustworthiness of each evidence passage retrieved, as well as the validity of the problem as a whole. The user-specific feedback provides new information the system needs to perform active learning to learn the user’s preference and produce personalized, and/or domain-specific problem lists.


Automated Problem List Generation from Electronic Medical Records in IBM Watson

AAAI Conferences

Identifying a patient’s important medical problems requires broad and deep medical expertise, as well as significant time to gather all the relevant facts from the patient’s medical record and assess the clinical importance of the facts in reaching the final conclusion. A patient’s medical problem list is by far the most critical information that a physician uses in treatment and care of a patient. In spite of its critical role, its curation, manual or automated, has been an unmet need in clinical practice. We developed a machine learning technique in IBM Watson to automatically generate a patient’s medical problem list. The machine learning model uses lexical and medical features extracted from a patient’s record using NLP techniques. We show that the automated method achieves 70% recall and 67% precision based on the gold standard that medical experts created on a set of de-identified patient records from a major hospital system in the US. To the best of our knowledge this is the first successful machine learning/NLP method of extracting an open-ended patient’s medical problems from an Electronic Medical Record (EMR). This paper also contributes a methodology for assessing accuracy of a medical problem list generation technique.