Tsering, Thupten
Sun-Shine: A Large Language Model for Tibetan Culture
Huang, Cheng, Gao, Fan, Tashi, Nyima, Liu, Yutong, Wang, Xiangxiang, Tsering, Thupten, Ma-bao, Ban, Duojie, Renzeg, Luosang, Gadeng, Dongrub, Rinchen, Tashi, Dorje, Feng, Xiao, Yu, Yongbin
Tibetan, a minority language in China, features a highly intricate grammatical structure, characterized by four verb tenses and a tense system with frequent irregularities, contributing to its extensive inflectional diversity. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in many domains. Despite the success in other fields, current LLMs often fall short in catering to the needs of domain experts like Tibetans, and the potential of LLMs for Tibetan culture is under-explored. The intrinsic reasons are the immense and intricate nature of Tibetan culture as well as the necessity for higher granularity and richness in knowledge. Simultaneously, the complexity and uniqueness of its grammatical structure, coupled with its status as a minority ethnic language, contribute to data scarcity, which remains a fundamental challenge. To alleviate these issues, we introduce Llama-Sunshine (Sun-Shine), the first large language model for Tibetan culture, which is expert in various Tibetan language processing tasks. Sun-Shine incorporates state-of-the-art model architectures optimized for Tibetan's linguistic features. We also propose TIB-STC, a comprehensive dataset comprising diverse Tibetan texts such as literature, religious scripts, news, and conversational data, which is also the first large-scale dataset for Tibetan culture. Though comprehensive experiments, Sun-Shine not only demonstrates a higher level of knowledge expertise for Tibetan culture but also gains preliminary embodied intelligence capabilities in Tibetan language processing tasks, like language modeling, text classification, machine translation, and syntactic analysis. Moreover, it excels in low-resource scenarios, showcasing strong generalization capabilities.
TLUE: A Tibetan Language Understanding Evaluation Benchmark
Gao, Fan, Huang, Cheng, Tashi, Nyima, Wang, Xiangxiang, Tsering, Thupten, Ma-bao, Ban, Duojie, Renzeg, Luosang, Gadeng, Dongrub, Rinchen, Tashi, Dorje, Feng, Xiao, Yu, Yongbin
Large language models (LLMs) have made tremendous progress in recent years, but low-resource languages, such as Tibetan, remain significantly underrepresented in their evaluation. Despite Tibetan being spoken by over seven million people, it has largely been neglected in the development and assessment of LLMs. To address this gap, we present TLUE (A Tibetan Language Understanding Evaluation Benchmark), the first large-scale benchmark for assessing LLMs' capabilities in Tibetan. TLUE comprises two major components: (1) a comprehensive multi-task understanding benchmark spanning 5 domains and 67 subdomains, and (2) a safety benchmark covering 7 subdomains. We evaluate a diverse set of state-of-the-art LLMs. Experimental results demonstrate that most LLMs perform below the random baseline, highlighting the considerable challenges LLMs face in processing Tibetan, a low-resource language. TLUE provides an essential foundation for driving future research and progress in Tibetan language understanding and underscores the need for greater inclusivity in LLM development.
Machine Intelligence-Driven Classification of Cancer Patients-Derived Extracellular Vesicles using Fluorescence Correlation Spectroscopy: Results from a Pilot Study
Uthamacumaran, Abicumaran, Abdouh, Mohamed, Sengupta, Kinshuk, Gao, Zu-hua, Forte, Stefano, Tsering, Thupten, Burnier, Julia V, Arena, Goffredo
Patient-derived extracellular vesicles (EVs) that contains a complex biological cargo is a valuable source of liquid biopsy diagnostics to aid in early detection, cancer screening, and precision nanotherapeutics. In this study, we predicted that coupling cancer patient blood-derived EVs to time-resolved spectroscopy and artificial intelligence (AI) could provide a robust cancer screening and follow-up tools. Methods: Fluorescence correlation spectroscopy (FCS) measurements were performed on 24 blood samples-derived EVs. Blood samples were obtained from 15 cancer patients (presenting 5 different types of cancers), and 9 healthy controls (including patients with benign lesions). The obtained FCS autocorrelation spectra were processed into power spectra using the Fast-Fourier Transform algorithm and subjected to various machine learning algorithms to distinguish cancer spectra from healthy control spectra. Results and Applications: The performance of AdaBoost Random Forest (RF) classifier, support vector machine, and multilayer perceptron, were tested on selected frequencies in the N=118 power spectra. The RF classifier exhibited a 90% classification accuracy and high sensitivity and specificity in distinguishing the FCS power spectra of cancer patients from those of healthy controls. Further, an image convolutional neural network (CNN), ResNet network, and a quantum CNN were assessed on the power spectral images as additional validation tools. All image-based CNNs exhibited a nearly equal classification performance with an accuracy of roughly 82% and reasonably high sensitivity and specificity scores. Our pilot study demonstrates that AI-algorithms coupled to time-resolved FCS power spectra can accurately and differentially classify the complex patient-derived EVs from different cancer samples of distinct tissue subtypes.