Tseng, Yuan
REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR
Tseng, Liang-Hsuan, Hu, En-Pei, Chiang, Cheng-Han, Tseng, Yuan, Lee, Hung-yi, Lee, Lin-shan, Sun, Shao-Hua
Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance.
Cascading and Direct Approaches to Unsupervised Constituency Parsing on Spoken Sentences
Tseng, Yuan, Lai, Cheng-I, Lee, Hung-yi
Past work on unsupervised parsing is constrained to written form. In this paper, we present the first study on unsupervised spoken constituency parsing given unlabeled spoken sentences and unpaired textual data. The goal is to determine the spoken sentences' hierarchical syntactic structure in the form of constituency parse trees, such that each node is a span of audio that corresponds to a constituent. We compare two approaches: (1) cascading an unsupervised automatic speech recognition (ASR) model and an unsupervised parser to obtain parse trees on ASR transcripts, and (2) direct training an unsupervised parser on continuous word-level speech representations. This is done by first splitting utterances into sequences of word-level segments, and aggregating self-supervised speech representations within segments to obtain segment embeddings. We find that separately training a parser on the unpaired text and directly applying it on ASR transcripts for inference produces better results for unsupervised parsing. Additionally, our results suggest that accurate segmentation alone may be sufficient to parse spoken sentences accurately. Finally, we show the direct approach may learn head-directionality correctly for both head-initial and head-final languages without any explicit inductive bias.