Tseng, Hung-Yu
Taming Latent Diffusion Model for Neural Radiance Field Inpainting
Lin, Chieh Hubert, Kim, Changil, Huang, Jia-Bin, Li, Qinbo, Ma, Chih-Yao, Kopf, Johannes, Yang, Ming-Hsuan, Tseng, Hung-Yu
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task.
Self-supervised Audio Spatialization with Correspondence Classifier
Lu, Yu-Ding, Lee, Hsin-Ying, Tseng, Hung-Yu, Yang, Ming-Hsuan
Spatial audio is an essential medium to audiences for 3D visual and auditory experience. However, the recording devices and techniques are expensive or inaccessible to the general public. In this work, we propose a self-supervised audio spatialization network that can generate spatial audio given the corresponding video and monaural audio. To enhance spatialization performance, we use an auxiliary classifier to classify ground-truth videos and those with audio where the left and right channels are swapped. We collect a large-scale video dataset with spatial audio to validate the proposed method. Experimental results demonstrate the effectiveness of the proposed model on the audio spatialization task.