Goto

Collaborating Authors

 Tseng, Cheng-Ching


Implicit Neural Image Field for Biological Microscopy Image Compression

arXiv.org Artificial Intelligence

The rapid pace of innovation in biological microscopy imaging has led to large images, putting pressure on data storage and impeding efficient sharing, management, and visualization. This necessitates the development of efficient compression solutions. Traditional CODEC methods struggle to adapt to the diverse bioimaging data and often suffer from sub-optimal compression. In this study, we propose an adaptive compression workflow based on Implicit Neural Representation (INR). This approach permits application-specific compression objectives, capable of compressing images of any shape and arbitrary pixel-wise decompression. We demonstrated on a wide range of microscopy images from real applications that our workflow not only achieved high, controllable compression ratios (e.g., 512x) but also preserved detailed information critical for downstream analysis.


MoEC: Mixture of Experts Implicit Neural Compression

arXiv.org Artificial Intelligence

Emerging Implicit Neural Representation (INR) is a promising data compression technique, which represents the data using the parameters of a Deep Neural Network (DNN). Existing methods manually partition a complex scene into local regions and overfit the INRs into those regions. However, manually designing the partition scheme for a complex scene is very challenging and fails to jointly learn the partition and INRs. To solve the problem, we propose MoEC, a novel implicit neural compression method based on the theory of mixture of experts. Specifically, we use a gating network to automatically assign a specific INR to a 3D point in the scene. The gating network is trained jointly with the INRs of different local regions. Compared with block-wise and tree-structured partitions, our learnable partition can adaptively find the optimal partition in an end-to-end manner. We conduct detailed experiments on massive and diverse biomedical data to demonstrate the advantages of MoEC against existing approaches. In most of experiment settings, we have achieved state-of-the-art results. Especially in cases of extreme compression ratios, such as 6000x, we are able to uphold the PSNR of 48.16.