Tse, David
Tensor Biclustering
Feizi, Soheil, Javadi, Hamid, Tse, David
Consider a dataset where data is collected on multiple features of multiple individuals over multiple times. This type of data can be represented as a three dimensional individual/feature/time tensor and has become increasingly prominent in various areas of science. The tensor biclustering problem computes a subset of individuals and a subset of features whose signal trajectories over time lie in a low-dimensional subspace, modeling similarity among the signal trajectories while allowing different scalings across different individuals or different features. We study the information-theoretic limit of this problem under a generative model. Moreover, we propose an efficient spectral algorithm to solve the tensor biclustering problem and analyze its achievability bound in an asymptotic regime. Finally, we show the efficiency of our proposed method in several synthetic and real datasets.
NeuralFDR: Learning Discovery Thresholds from Hypothesis Features
Xia, Fei, Zhang, Martin J., Zou, James Y., Tse, David
As datasets grow richer, an important challenge is to leverage the full features in the data to maximize the number of useful discoveries while controlling for false positives. We address this problem in the context of multiple hypotheses testing, where for each hypothesis, we observe a p-value along with a set of features specific to that hypothesis. For example, in genetic association studies, each hypothesis tests the correlation between a variant and the trait. We have a rich set of features for each variant (e.g. its location, conservation, epigenetics etc.) which could inform how likely the variant is to have a true association. However popular testing approaches, such as Benjamini-Hochberg's procedure (BH) and independent hypothesis weighting (IHW), either ignore these features or assume that the features are categorical. We propose a new algorithm, NeuralFDR, which automatically learns a discovery threshold as a function of all the hypothesis features. We parametrize the discovery threshold as a neural network, which enables flexible handling of multi-dimensional discrete and continuous features as well as efficient end-to-end optimization. We prove that NeuralFDR has strong false discovery rate (FDR) guarantees, and show that it makes substantially more discoveries in synthetic and real datasets. Moreover, we demonstrate that the learned discovery threshold is directly interpretable.
NeuralFDR: Learning Discovery Thresholds from Hypothesis Features
Xia, Fei, Zhang, Martin J., Zou, James, Tse, David
As datasets grow richer, an important challenge is to leverage the full features in the data to maximize the number of useful discoveries while controlling for false positives. We address this problem in the context of multiple hypotheses testing, where for each hypothesis, we observe a p-value along with a set of features specific to that hypothesis. For example, in genetic association studies, each hypothesis tests the correlation between a variant and the trait. We have a rich set of features for each variant (e.g. its location, conservation, epigenetics etc.) which could inform how likely the variant is to have a true association. However popular testing approaches, such as Benjamini-Hochberg's procedure (BH) and independent hypothesis weighting (IHW), either ignore these features or assume that the features are categorical or uni-variate. We propose a new algorithm, NeuralFDR, which automatically learns a discovery threshold as a function of all the hypothesis features. We parametrize the discovery threshold as a neural network, which enables flexible handling of multi-dimensional discrete and continuous features as well as efficient end-to-end optimization. We prove that NeuralFDR has strong false discovery rate (FDR) guarantees, and show that it makes substantially more discoveries in synthetic and real datasets. Moreover, we demonstrate that the learned discovery threshold is directly interpretable.
Understanding GANs: the LQG Setting
Feizi, Soheil, Suh, Changho, Xia, Fei, Tse, David
Generative Adversarial Networks (GANs) have become a popular method to learn a probability model from data. Many GAN architectures with different optimization metrics have been introduced recently. Instead of proposing yet another architecture, this paper aims to provide an understanding of some of the basic issues surrounding GANs. First, we propose a natural way of specifying the loss function for GANs by drawing a connection with supervised learning. Second, we shed light on the generalization peformance of GANs through the analysis of a simple LQG setting: the generator is Linear, the loss function is Quadratic and the data is drawn from a Gaussian distribution. We show that in this setting: 1) the optimal GAN solution converges to population Principal Component Analysis (PCA) as the number of training samples increases; 2) the number of samples required scales exponentially with the dimension of the data; 3) the number of samples scales almost linearly if the discriminator is constrained to be quadratic. Thus, linear generators and quadratic discriminators provide a good balance for fast learning.
Porcupine Neural Networks: (Almost) All Local Optima are Global
Feizi, Soheil, Javadi, Hamid, Zhang, Jesse, Tse, David
Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes their performance analysis challenging. In this paper, we take a novel approach to this problem by asking whether one can constrain neural network weights to make its optimization landscape have good theoretical properties while at the same time, be a good approximation for the unconstrained one. For two-layer neural networks, we provide affirmative answers to these questions by introducing Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist. Moreover, our theoretical and empirical results suggest that an unconstrained neural network can be approximated using a polynomially-large PNN.
A Minimax Approach to Supervised Learning
Farnia, Farzan, Tse, David
Given a task of predicting $Y$ from $X$, a loss function $L$, and a set of probability distributions $\Gamma$ on $(X,Y)$, what is the optimal decision rule minimizing the worst-case expected loss over $\Gamma$? In this paper, we address this question by introducing a generalization of the principle of maximum entropy. Applying this principle to sets of distributions with marginal on $X$ constrained to be the empirical marginal from the data, we develop a general minimax approach for supervised learning problems. While for some loss functions such as squared-error and log loss, the minimax approach rederives well-knwon regression models, for the 0-1 loss it results in a new linear classifier which we call the maximum entropy machine. The maximum entropy machine minimizes the worst-case 0-1 loss over the structured set of distribution, and by our numerical experiments can outperform other well-known linear classifiers such as SVM. We also prove a bound on the generalization worst-case error in the minimax approach.
Maximally Correlated Principal Component Analysis
Feizi, Soheil, Tse, David
In the era of big data, reducing data dimensionality is critical in many areas of science. Widely used Principal Component Analysis (PCA) addresses this problem by computing a low dimensional data embedding that maximally explain variance of the data. However, PCA has two major weaknesses. Firstly, it only considers linear correlations among variables (features), and secondly it is not suitable for categorical data. We resolve these issues by proposing Maximally Correlated Principal Component Analysis (MCPCA). MCPCA computes transformations of variables whose covariance matrix has the largest Ky Fan norm. Variable transformations are unknown, can be nonlinear and are computed in an optimization. MCPCA can also be viewed as a multivariate extension of Maximal Correlation. For jointly Gaussian variables we show that the covariance matrix corresponding to the identity (or the negative of the identity) transformations majorizes covariance matrices of non-identity functions. Using this result we characterize global MCPCA optimizers for nonlinear functions of jointly Gaussian variables for every rank constraint. For categorical variables we characterize global MCPCA optimizers for the rank one constraint based on the leading eigenvector of a matrix computed using pairwise joint distributions. For a general rank constraint we propose a block coordinate descend algorithm and show its convergence to stationary points of the MCPCA optimization. We compare MCPCA with PCA and other state-of-the-art dimensionality reduction methods including Isomap, LLE, multilayer autoencoders (neural networks), kernel PCA, probabilistic PCA and diffusion maps on several synthetic and real datasets. We show that MCPCA consistently provides improved performance compared to other methods.
A Minimax Approach to Supervised Learning
Farnia, Farzan, Tse, David
Given a task of predicting Y from X, a loss function L, and a set of probability distributions Gamma on (X,Y), what is the optimal decision rule minimizing the worst-case expected loss over Gamma? In this paper, we address this question by introducing a generalization of the maximum entropy principle. Applying this principle to sets of distributions with marginal on X constrained to be the empirical marginal, we provide a minimax interpretation of the maximum likelihood problem over generalized linear models as well as some popular regularization schemes. For quadratic and logarithmic loss functions we revisit well-known linear and logistic regression models. Moreover, for the 0-1 loss we derive a classifier which we call the minimax SVM. The minimax SVM minimizes the worst-case expected 0-1 loss over the proposed Gamma by solving a tractable optimization problem. We perform several numerical experiments to show the power of the minimax SVM in outperforming the SVM.
Discrete Rényi Classifiers
Razaviyayn, Meisam, Farnia, Farzan, Tse, David
Consider the binary classification problem of predicting a target variable Y from a discrete feature vector X = (X1,...,Xd). When the probability distribution P(X,Y) is known, the optimal classifier, leading to the minimum misclassification rate, is given by the Maximum A-posteriori Probability (MAP) decision rule. However, in practice, estimating the complete joint distribution P(X,Y) is computationally and statistically impossible for large values of d. Therefore, an alternative approach is to first estimate some low order marginals of the joint probability distribution P(X,Y) and then design the classifier based on the estimated low order marginals. This approach is also helpful when the complete training data instances are not available due to privacy concerns. In this work, we consider the problem of designing the optimum classifier based on some estimated low order marginals of (X,Y). We prove that for a given set of marginals, the minimum Hirschfeld-Gebelein-R´enyi (HGR) correlation principle introduced in [1] leads to a randomized classification rule which is shown to have a misclassification rate no larger than twice the misclassification rate of the optimal classifier. Then, we show that under a separability condition, the proposed algorithm is equivalent to a randomized linear regression approach which naturally results in a robust feature selection method selecting a subset of features having the maximum worst case HGR correlation with the target variable. Our theoretical upper-bound is similar to the recent Discrete Chebyshev Classifier (DCC) approach [2], while the proposed algorithm has significant computational advantages since it only requires solving a least square optimization problem. Finally, we numerically compare our proposed algorithm with the DCC classifier and show that the proposed algorithm results in better misclassification rate over various UCI data repository datasets.