Tsang, Ivor
Masking: A New Perspective of Noisy Supervision
Han, Bo, Yao, Jiangchao, Niu, Gang, Zhou, Mingyuan, Tsang, Ivor, Zhang, Ya, Sugiyama, Masashi
It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called ''Masking'' that conveys human cognition of invalid class transitions and naturally speculates the structure of the noise transition matrix.
On the Optimality of Classifier Chain for Multi-label Classification
Liu, Weiwei, Tsang, Ivor
To capture the interdependencies between labels in multi-label classification problems, classifier chain (CC) tries to take the multiple labels of each instance into account under a deterministic high-order Markov Chain model. Since its performance is sensitive to the choice of label order, the key issue is how to determine the optimal label order for CC. In this work, we first generalize the CC model over a random label order. Then, we present a theoretical analysis of the generalization error for the proposed generalized model. Based on our results, we propose a dynamic programming based classifier chain (CC-DP) algorithm to search the globally optimal label order for CC and a greedy classifier chain (CC-Greedy) algorithm to find a locally optimal CC.
Domain-adversarial Network Alignment
Hong, Huiting, Li, Xin, Pan, Yuangang, Tsang, Ivor
Network alignment is a critical task to a wide variety of fields. Many existing works leverage on representation learning to accomplish this task without eliminating domain representation bias induced by domain-dependent features, which yield inferior alignment performance. This paper proposes a unified deep architecture (DANA) to obtain a domain-invariant representation for network alignment via an adversarial domain classifier. Specifically, we employ the graph convolutional networks to perform network embedding under the domain adversarial principle, given a small set of observed anchors. Then, the semi-supervised learning framework is optimized by maximizing a posterior probability distribution of observed anchors and the loss of a domain classifier simultaneously. We also develop a few variants of our model, such as, direction-aware network alignment, weight-sharing for directed networks and simplification of parameter space. Experiments on three real-world social network datasets demonstrate that our proposed approaches achieve state-of-the-art alignment results.
Probabilistic CCA with Implicit Distributions
Shi, Yaxin, Pan, Yuangang, Xu, Donna, Tsang, Ivor
Canonical Correlation Analysis (CCA) is a classic technique for multi-view data analysis. To overcome the deficiency of linear correlation in practical multi-view learning tasks, various CCA variants were proposed to capture nonlinear dependency. However, it is non-trivial to have an in-principle understanding of these variants due to their inherent restrictive assumption on the data and latent code distributions. Although some works have studied probabilistic interpretation for CCA, these models still require the explicit form of the distributions to achieve a tractable solution for the inference. In this work, we study probabilistic interpretation for CCA based on implicit distributions. We present Conditional Mutual Information (CMI) as a new criterion for CCA to consider both linear and nonlinear dependency for arbitrarily distributed data. To eliminate direct estimation for CMI, in which explicit form of the distributions is still required, we derive an objective which can provide an estimation for CMI with efficient inference methods. To facilitate Bayesian inference of multi-view analysis, we propose Adversarial CCA (ACCA), which achieves consistent encoding for multi-view data with the consistent constraint imposed on the marginalization of the implicit posteriors. Such a model would achieve superiority in the alignment of the multi-view data with implicit distributions. It is interesting to note that most of the existing CCA variants can be connected with our proposed CCA model by assigning specific form for the posterior and likelihood distributions. Extensive experiments on nonlinear correlation analysis and cross-view generation on benchmark and real-world datasets demonstrate the superiority of our model.
Co-teaching: Robust training of deep neural networks with extremely noisy labels
Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor, Sugiyama, Masashi
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called ''Co-teaching'' for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models.
Masking: A New Perspective of Noisy Supervision
Han, Bo, Yao, Jiangchao, Niu, Gang, Zhou, Mingyuan, Tsang, Ivor, Zhang, Ya, Sugiyama, Masashi
It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called ''Masking'' that conveys human cognition of invalid class transitions and naturally speculates the structure of the noise transition matrix. To this end, we derive a structure-aware probabilistic model incorporating a structure prior, and solve the challenges from structure extraction and structure alignment. Thanks to Masking, we only estimate unmasked noise transition probabilities and the burden of estimation is tremendously reduced. We conduct extensive experiments on CIFAR-10 and CIFAR-100 with three noise structures as well as the industrial-level Clothing1M with agnostic noise structure, and the results show that Masking can improve the robustness of classifiers significantly.
Co-teaching: Robust training of deep neural networks with extremely noisy labels
Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor, Sugiyama, Masashi
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called ''Co-teaching'' for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models.
Masking: A New Perspective of Noisy Supervision
Han, Bo, Yao, Jiangchao, Niu, Gang, Zhou, Mingyuan, Tsang, Ivor, Zhang, Ya, Sugiyama, Masashi
It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called "Masking" that conveys human cognition ofinvalid class transitions and naturally speculates the structure of the noise transition matrix. To this end, we derive a structure-aware probabilistic model incorporating a structure prior, and solve the challenges from structure extraction and structure alignment. Thanks to Masking, we only estimate unmasked noise transition probabilities and the burden of estimation is tremendously reduced. We conduct extensive experiments on CIFAR-10 and CIFAR-100 with three noise structures as well as the industrial-level Clothing1M with agnostic noise structure, andthe results show that Masking can improve the robustness of classifiers significantly.
Pumpout: A Meta Approach for Robustly Training Deep Neural Networks with Noisy Labels
Han, Bo, Niu, Gang, Yao, Jiangchao, Yu, Xingrui, Xu, Miao, Tsang, Ivor, Sugiyama, Masashi
It is challenging to train deep neural networks robustly on the industrial-level data, since labels of such data are heavily noisy, and their label generation processes are normally agnostic. To handle these issues, by using the memorization effects of deep neural networks, we may train deep neural networks on the whole dataset only the first few iterations. Then, we may employ early stopping or the small-loss trick to train them on selected instances. However, in such training procedures, deep neural networks inevitably memorize some noisy labels, which will degrade their generalization. In this paper, we propose a meta algorithm called Pumpout to overcome the problem of memorizing noisy labels. By using scaled stochastic gradient ascent, Pumpout actively squeezes out the negative effects of noisy labels from the training model, instead of passively forgetting these effects. We leverage Pumpout to upgrade two representative methods: MentorNet and Backward Correction. Empirical results on benchmark datasets demonstrate that Pumpout can significantly improve the robustness of representative methods.
Co-teaching: Robust Training Deep Neural Networks with Extremely Noisy Labels
Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor, Sugiyama, Masashi
It is challenging to train deep neural networks robustly with noisy labels, as the capacity of deep neural networks is so high that they can totally over-fit on these noisy labels. In this paper, motivated by the memorization effects of deep networks, which shows networks fit clean instances first and then noisy ones, we present a new paradigm called "\textit{Co-teaching}" combating with noisy labels. We train two networks simultaneously. First, in each mini-batch data, each network filters noisy instances based on memorization effects. Then, it teaches the remained instances to its peer network for updating the parameters. Empirical results on benchmark datasets demonstrate that, the robustness of deep learning models trained by Co-teaching approach is much superior than that of state-of-the-art methods.