On the Optimality of Classifier Chain for Multi-label Classification
–Neural Information Processing Systems
To capture the interdependencies between labels in multi-label classification problems, classifier chain (CC) tries to take the multiple labels of each instance into account under a deterministic high-order Markov Chain model. Since its performance is sensitive to the choice of label order, the key issue is how to determine the optimal label order for CC. In this work, we first generalize the CC model over a random label order. Then, we present a theoretical analysis of the generalization error for the proposed generalized model. Based on our results, we propose a dynamic programming based classifier chain (CC-DP) algorithm to search the globally optimal label order for CC and a greedy classifier chain (CC-Greedy) algorithm to find a locally optimal CC.
Neural Information Processing Systems
Feb-14-2020, 07:00:34 GMT