Tsai, Richard Tzong-Han
SMUTF: Schema Matching Using Generative Tags and Hybrid Features
Zhang, Yu, Di, Mei, Luo, Haozheng, Xu, Chenwei, Tsai, Richard Tzong-Han
We introduce SMUTF, a unique approach for large-scale tabular data schema matching (SM), which assumes that supervised learning does not affect performance in open-domain tasks, thereby enabling effective cross-domain matching. This system uniquely combines rule-based feature engineering, pre-trained language models, and generative large language models. In an innovative adaptation inspired by the Humanitarian Exchange Language, we deploy 'generative tags' for each data column, enhancing the effectiveness of SM. SMUTF exhibits extensive versatility, working seamlessly with any pre-existing pre-trained embeddings, classification methods, and generative models. Recognizing the lack of extensive, publicly available datasets for SM, we have created and open-sourced the HDXSM dataset from the public humanitarian data. We believe this to be the most exhaustive SM dataset currently available. In evaluations across various public datasets and the novel HDXSM dataset, SMUTF demonstrated exceptional performance, surpassing existing state-of-the-art models in terms of accuracy and efficiency, and} improving the F1 score by 11.84% and the AUC of ROC by 5.08%.
Chat Vector: A Simple Approach to Equip LLMs With New Language Chat Capabilities
Huang, Shih-Cheng, Li, Pin-Zu, Hsu, Yu-Chi, Chen, Kuang-Ming, Lin, Yu Tung, Hsiao, Shih-Kai, Tsai, Richard Tzong-Han, Lee, Hung-yi
With the advancements in conversational AI, such as ChatGPT, this paper focuses on exploring developing Large Language Models (LLMs) for non-English languages, especially emphasizing alignment with human preferences. We introduce a computationally efficient method, leveraging chat vector, to synergize pre-existing knowledge and behaviors in LLMs, restructuring the conventional training paradigm from continual pre-train -> SFT -> RLHF to continual pre-train + chat vector. Our empirical studies, primarily focused on Traditional Chinese, employ LLaMA2 as the base model and acquire the chat vector by subtracting the pre-trained weights, LLaMA2, from the weights of LLaMA2-chat. Evaluating from three distinct facets, which are toxicity, ability of instruction following, and multi-turn dialogue demonstrates the chat vector's superior efficacy in chatting. To confirm the adaptability of our approach, we extend our experiments to include models pre-trained in both Korean and Simplified Chinese, illustrating the versatility of our methodology. Overall, we present a significant solution in aligning LLMs with human preferences efficiently across various languages, accomplished by the chat vector.
Exploring Methods for Building Dialects-Mandarin Code-Mixing Corpora: A Case Study in Taiwanese Hokkien
Lu, Sin-En, Lu, Bo-Han, Lu, Chao-Yi, Tsai, Richard Tzong-Han
In natural language processing (NLP), code-mixing (CM) is a challenging task, especially when the mixed languages include dialects. In Southeast Asian countries such as Singapore, Indonesia, and Malaysia, Hokkien-Mandarin is the most widespread code-mixed language pair among Chinese immigrants, and it is also common in Taiwan. However, dialects such as Hokkien often have a scarcity of resources and the lack of an official writing system, limiting the development of dialect CM research. In this paper, we propose a method to construct a Hokkien-Mandarin CM dataset to mitigate the limitation, overcome the morphological issue under the Sino-Tibetan language family, and offer an efficient Hokkien word segmentation method through a linguistics-based toolkit. Furthermore, we use our proposed dataset and employ transfer learning to train the XLM (cross-lingual language model) for translation tasks. To fit the code-mixing scenario, we adapt XLM slightly. We found that by using linguistic knowledge, rules, and language tags, the model produces good results on CM data translation while maintaining monolingual translation quality.
EPG2S: Speech Generation and Speech Enhancement based on Electropalatography and Audio Signals using Multimodal Learning
Chen, Li-Chin, Chen, Po-Hsun, Tsai, Richard Tzong-Han, Tsao, Yu
Speech generation and enhancement based on articulatory movements facilitate communication when the scope of verbal communication is absent, e.g., in patients who have lost the ability to speak. Although various techniques have been proposed to this end, electropalatography (EPG), which is a monitoring technique that records contact between the tongue and hard palate during speech, has not been adequately explored. Herein, we propose a novel multimodal EPG-to-speech (EPG2S) system that utilizes EPG and speech signals for speech generation and enhancement. Different fusion strategies based on multiple combinations of EPG and noisy speech signals are examined, and the viability of the proposed method is investigated. Experimental results indicate that EPG2S achieves desirable speech generation outcomes based solely on EPG signals. Further, the addition of noisy speech signals is observed to improve quality and intelligibility. Additionally, EPG2S is observed to achieve high-quality speech enhancement based solely on audio signals, with the addition of EPG signals further improving the performance. The late fusion strategy is deemed to be the most effective approach for simultaneous speech generation and enhancement.