Trivedi, Rakshit
The AI Agent Index
Casper, Stephen, Bailey, Luke, Hunter, Rosco, Ezell, Carson, Cabalé, Emma, Gerovitch, Michael, Slocum, Stewart, Wei, Kevin, Jurkovic, Nikola, Khan, Ariba, Christoffersen, Phillip J. K., Ozisik, A. Pinar, Trivedi, Rakshit, Hadfield-Menell, Dylan, Kolt, Noam
Leading AI developers and startups are increasingly deploying agentic AI systems that can plan and execute complex tasks with limited human involvement. However, there is currently no structured framework for documenting the technical components, intended uses, and safety features of agentic systems. To fill this gap, we introduce the AI Agent Index, the first public database to document information about currently deployed agentic AI systems. For each system that meets the criteria for inclusion in the index, we document the system's components (e.g., base model, reasoning implementation, tool use), application domains (e.g., computer use, software engineering), and risk management practices (e.g., evaluation results, guardrails), based on publicly available information and correspondence with developers. We find that while developers generally provide ample information regarding the capabilities and applications of agentic systems, they currently provide limited information regarding safety and risk management practices. The AI Agent Index is available online at https://aiagentindex.mit.edu/
GraphOpt: Learning Optimization Models of Graph Formation
Trivedi, Rakshit, Yang, Jiachen, Zha, Hongyuan
Formation mechanisms are fundamental to the study of complex networks, but learning them from observations is challenging. In real-world domains, one often has access only to the final constructed graph, instead of the full construction process, and observed graphs exhibit complex structural properties. In this work, we propose GraphOpt, an end-to-end framework that jointly learns an implicit model of graph structure formation and discovers an underlying optimization mechanism in the form of a latent objective function. The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain. GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm. Further, it employs a novel continuous latent action space that aids scalability. Empirically, we demonstrate that GraphOpt discovers a latent objective transferable across graphs with different characteristics. GraphOpt also learns a robust stochastic policy that achieves competitive link prediction performance without being explicitly trained on this task and further enables construction of graphs with properties similar to those of the observed graph.
LinkNBed: Multi-Graph Representation Learning with Entity Linkage
Trivedi, Rakshit, Sisman, Bunyamin, Ma, Jun, Faloutsos, Christos, Zha, Hongyuan, Dong, Xin Luna
Knowledge graphs have emerged as an important model for studying complex multi-relational data. This has given rise to the construction of numerous large scale but incomplete knowledge graphs encoding information extracted from various resources. An effective and scalable approach to jointly learn over multiple graphs and eventually construct a unified graph is a crucial next step for the success of knowledge-based inference for many downstream applications. To this end, we propose LinkNBed, a deep relational learning framework that learns entity and relationship representations across multiple graphs. We identify entity linkage across graphs as a vital component to achieve our goal. We design a novel objective that leverage entity linkage and build an efficient multi-task training procedure. Experiments on link prediction and entity linkage demonstrate substantial improvements over the state-of-the-art relational learning approaches.
Representation Learning over Dynamic Graphs
Trivedi, Rakshit, Farajtabar, Mehrdad, Biswal, Prasenjeet, Zha, Hongyuan
How can we effectively encode evolving information over dynamic graphs into low-dimensional representations? In this paper, we propose DyRep, an inductive deep representation learning framework that learns a set of functions to efficiently produce low-dimensional node embeddings that evolves over time. The learned embeddings drive the dynamics of two key processes namely, communication and association between nodes in dynamic graphs. These processes exhibit complex nonlinear dynamics that evolve at different time scales and subsequently contribute to the update of node embeddings. We employ a time-scale dependent multivariate point process model to capture these dynamics. We devise an efficient unsupervised learning procedure and demonstrate that our approach significantly outperforms representative baselines on two real-world datasets for the problem of dynamic link prediction and event time prediction.
Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions
Wang, Yichen, Du, Nan, Trivedi, Rakshit, Song, Le
Matching users to the right items at the right time is a fundamental task in recommendation systems. As users interact with different items over time, users' and items' feature may evolve and co-evolve over time. Traditional models based on static latent features or discretizing time into epochs can become ineffective for capturing the fine-grained temporal dynamics in the user-item interactions. We propose a coevolutionary latent feature process model that accurately captures the coevolving nature of users' and items' feature. To learn parameters, we design an efficient convex optimization algorithm with a novel low rank space sharing constraints. Extensive experiments on diverse real-world datasets demonstrate significant improvements in user behavior prediction compared to state-of-the-arts.